【題目】滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實數(shù)的值為( )
A. 或 B. 2或 C. 2 D. 或
【答案】D
【解析】分析:由約束條件作出可行域,將,化為,z相當于的縱截距,由幾何意義可得。
詳解:由題中約束條件作可行域如下圖所示:
將化為,即直線的縱截距取得最大值時的最優(yōu)解不唯一。
當時,直線經(jīng)過點A(-2,-2)時縱截距最大,此時最優(yōu)解僅有一個,故不符合題意;
當a=2時,直線與重合時縱截距最大,此時最優(yōu)解不唯一,故符合題意;
當時,直線經(jīng)過點B(0,2)時縱截距最大,此時最優(yōu)解僅有一個,故不符合題意;
當a=-1時,直線與y=-x+2重合時縱截距最大,此時最優(yōu)解不唯一,故符合題意;
當a<-1時,直線經(jīng)過點C(2,0)時縱截距最大,此時最優(yōu)解僅有一個,故不符合題意。
綜上,當a=2或a=-1時最優(yōu)解不唯一,符合題意。
故本題正確答案為D。
科目:高中數(shù)學 來源: 題型:
【題目】2018年3月山東省高考改革實施方案發(fā)布:2020年夏季高考開始全省高考考生總成績將由語文、數(shù)學、外語三門統(tǒng)一高考成績和學生自主選擇的普通高中學業(yè)水平等級性考試科目的成績共同構成.省教育廳為了解正就讀高中的學生家長對高考改革方案所持的贊成態(tài)度,隨機從中抽取了100名城鄉(xiāng)家長作為樣本進行調(diào)查,調(diào)查結果顯示樣本中有25人持不贊成意見.右面是根據(jù)樣本的調(diào)查結果繪制的等高條形圖.
(Ⅰ)請根據(jù)已知條件與等高條形圖完成下面的列聯(lián)表:
贊成 | 不贊成 | 合計 | |
城鎮(zhèn)居民 | |||
農(nóng)村居民 | |||
合計 |
(Ⅱ)試判斷我們是否有95%的把握認為“贊成高考改革方案與城鄉(xiāng)戶口有關”?.
【附】,其中.
0.150 | 0.100 | 0.050 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C滿足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+ ,面積S滿足1≤S≤2,記a,b,c分別為A,B,C所對的邊,在下列不等式一定成立的是( )
A.bc(b+c)>8
B.ab(a+b)>16
C.6≤abc≤12
D.12≤abc≤24
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的表面積是( )
A.90cm2
B.129cm2
C.132cm2
D.138cm2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記max{x,y}= ,min{x,y}= ,設 , 為平面向量,則( )
A.min{| + |,| ﹣ |}≤min{| |,| |}
B.min{| + |,| ﹣ |}≥min{| |,| |}
C.max{| + |2 , | ﹣ |2}≤| |2+| |2
D.max{| + |2 , | ﹣ |2}≥|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】假設每一架飛機的引擎在飛行中出現(xiàn)故障率為,且各引擎是否有故障是獨立的,已知4引擎飛機中至少有3個引擎正常運行,飛機就可成功飛行;2引擎飛機要2個引擎全部正常運行,飛機也可成功飛行,要使4引擎飛機比2引擎飛機更安全,則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= .
(1)證明:DE⊥平面ACD;
(2)求二面角B﹣AD﹣E的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x2+3x|,x∈R,若方程f(x)﹣a|x﹣1|=0恰有4個互異的實數(shù)根,則實數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,函數(shù).
若的最大值為0,記,求的值;
當時,記不等式的解集為M,求函數(shù),的值域是自然對數(shù)的底數(shù);
當時,討論函數(shù)的零點個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com