【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(t為參數(shù)).直線與曲線分別交于兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若點(diǎn)的極坐標(biāo)為,,求的值.

【答案】(1)曲線的直角坐標(biāo)方程為, 直線的普通方程為.

(2)

【解析】

(1)利用代入法消去參數(shù)方程中的參數(shù),可得直線的普通方程,極坐標(biāo)方程兩邊同乘以利用 即可得曲線的直角坐標(biāo)方程;(2)直線的參數(shù)方程代入圓的直角坐標(biāo)方程根據(jù)直線參數(shù)方程的幾何意義,利用韋達(dá)定理可得結(jié)果.

(1)由,得,

所以曲線的直角坐標(biāo)方程為,

, 直線的普通方程為.

(2)將直線的參數(shù)方程代入并化簡、整理,

. 因?yàn)橹本與曲線交于兩點(diǎn)。

所以,解得.

由根與系數(shù)的關(guān)系,得,.

因?yàn)辄c(diǎn)的直角坐標(biāo)為,在直線.所以

解得,此時(shí)滿足.,故..

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,設(shè)內(nèi)角A,B,C所對邊分別為a,b,c,且sin(A﹣ )﹣cos(A+ )=
(1)求角A的大小;
(2)若a= ,sin2B+cos2C=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足(2a+b)cosC+ccosB=0.
(Ⅰ)求角C的大;
(Ⅱ)求sinAcosB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(I)求函數(shù)的單調(diào)區(qū)間;

,使不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面四邊形ABCD中,已知∠A= ,∠B= ,AB=6,在AB邊上取點(diǎn)E,使得BE=1,連接EC,ED.若∠CED= ,EC=

(Ⅰ)求sin∠BCE的值;
(Ⅱ)求CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講
已知函數(shù)f(x)=4﹣|x|﹣|x﹣3|
(Ⅰ)求不等式f(x+ )≥0的解集;
(Ⅱ)若p,q,r為正實(shí)數(shù),且 =4,求3p+2q+r的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩圓x2+y2﹣2x+10y﹣24=0和 x2+y2+2x+2y﹣8=0

(1)判斷兩圓的位置關(guān)系;(2)求公共弦所在的直線方程及公共弦的長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】非零向量 , 的夾角為 ,且滿足| |=λ| |(λ>0),向量組 , 由一個(gè) 和兩個(gè) 排列而成,向量組 , 由兩個(gè) 和一個(gè) 排列而成,若 + + 所有可能值中的最小值為4 2 , 則λ=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品x件的總成本c(x)=120+,總成本的單位是元.

(1)當(dāng)x200變到220時(shí),總成本c關(guān)于產(chǎn)量x的平均變化率是多少?它代表什么實(shí)際意義?

(2)c′(200),并解釋它代表什么實(shí)際意義.

查看答案和解析>>

同步練習(xí)冊答案