【題目】已知兩圓x2+y2﹣2x+10y﹣24=0和 x2+y2+2x+2y﹣8=0
(1)判斷兩圓的位置關(guān)系;(2)求公共弦所在的直線方程及公共弦的長(zhǎng)
【答案】(1)見(jiàn)解析; (2)x﹣2y+4=0; .
【解析】
(1)先求出|C1C2|=,再判斷兩圓的位置關(guān)系.(2)把兩圓方程相減得到相交弦的直線方程,再利用弦長(zhǎng)公式求公共弦長(zhǎng).
(1)將兩圓化為標(biāo)準(zhǔn)方程,得C1:(x﹣1)2+(y+5)2=50,C2:(x+1)2+(y+1)2=10
∴圓C1的圓心為(1,﹣5),半徑為r1=5;圓C2的圓心為(﹣1,﹣1),半徑為r2=。
又∵|C1C2|=,
可得 r1﹣r2<|C1C2|<r1+r2,
∴兩圓相交。
(2)將兩圓的方程相減,得4x﹣8y+16=0,化簡(jiǎn)得:x﹣2y+4=0,
∴公共弦所在直線的方程是x﹣2y+4=0.
由(2)知圓C1的圓心(1,﹣5)到直線x﹣2y+4=0的距離,
由此可得,公共弦的長(zhǎng)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,雙曲線E的參數(shù)方程為 (θ為參數(shù)),設(shè)E的右焦點(diǎn)為F,經(jīng)過(guò)第一象限的漸進(jìn)線為l.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線l的極坐標(biāo)方程;
(2)設(shè)過(guò)F與l垂直的直線與y軸相交于點(diǎn)A,P是l上異于原點(diǎn)O的點(diǎn),當(dāng)A,O,F(xiàn),P四點(diǎn)在同一圓上時(shí),求這個(gè)圓的極坐標(biāo)方程及點(diǎn)P的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=nan﹣2n(n﹣1),首項(xiàng)=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為Mn,求證: Mn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(t為參數(shù)).直線與曲線分別交于兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若點(diǎn)的極坐標(biāo)為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sinωx+cosωx(ω>0),x∈R,若函數(shù)f(x)在區(qū)間(﹣ω,ω)內(nèi)單調(diào)遞增,且函數(shù)y=f(x)的圖象關(guān)于直線x=ω對(duì)稱,則ω的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓M過(guò)C(1,-1),D(-1,1)兩點(diǎn),且圓心M在x+y-2=0上.
(1)求圓M的方程;
(2)設(shè)點(diǎn)P是直線3x+4y+8=0上的動(dòng)點(diǎn),PA,PB是圓M的兩條切線,A,B為切點(diǎn),求四邊形PAMB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,四邊形是菱形,,,且,交于點(diǎn),是上任意一點(diǎn).
(1)求證:;
(2)若為的中點(diǎn),且二面角的余弦值為,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的個(gè)數(shù)為: ( )
①是“的充要條件”;
②“”是“”的必要不充分條件;
③“”是“直線與圓相切”的充分不必要條件
④“”是“”既不充分又不必要條件
A. 3 B. 4 C. 1 D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知不等式|x+3|﹣2x﹣1<0的解集為(x0 , +∞)
(Ⅰ)求x0的值;
(Ⅱ)若函數(shù)f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零點(diǎn),求實(shí)數(shù)m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com