【題目】足球運動是一項古老的體育活動,眾多的資料表明,中國古代足球的出現(xiàn)比歐洲早,歷史更為悠久,如圖,現(xiàn)代比賽用足球是由正五邊形與正六邊形構成的共32個面的多面體,著名數(shù)學家歐拉證明了凸多面體的面數(shù)(F),頂點數(shù)(V),棱數(shù)(E)滿足F+V-E=2,那么,足球有______.個正六邊形的面,若正六邊形的邊長為,則足球的直徑為______.cm(結果保留整數(shù))(參考數(shù)據(jù)
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若在處導數(shù)相等,證明:為定值,并求出該定值;
(2)已知對于任意,直線與曲線有唯一公共點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)(),已知在有且僅有3個零點,下列結論正確的是( )
A.在上存在,,滿足
B.在有且僅有1個最小值點
C.在單調遞增
D.的取值范圍是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E:(),它的上,下頂點分別為A,B,左,右焦點分別為,,若四邊形為正方形,且面積為2.
(Ⅰ)求橢圓E的標準方程;
(Ⅱ)設存在斜率不為零且平行的兩條直線,,它們與橢圓E分別交于點C,D,M,N,且四邊形是菱形,求出該菱形周長的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線與拋物線相交于不同的兩點.
(1)如果直線過拋物線的焦點,求的值;
(2)如果,證明直線必過一定點,并求出該定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】個人所得稅是國家對本國公民、居住在本國境內的個人的所得和境外個人來源于本國的所得征收的一種所得稅.我國在1980年9月10日,第五屆全國人民代表大會第三次會議通過并公布了《中華人民共和國個人所得稅法》.公民依法誠信納稅是義務,更是責任現(xiàn)將自2013年至2017年的個人所得稅收入統(tǒng)計如下
并制作了時間代號x與個人所得稅收入的如如圖所示的散點圖:
根據(jù)散點圖判斷,可用①y=menx與②作為年個人所得稅收入y關于時間代號x的回歸方程,經(jīng)過數(shù)據(jù)運算和處理,得到如下數(shù)據(jù):
以下計算過程中四舍五入保留兩位小數(shù).
(1)根據(jù)所給數(shù)據(jù),分別求出①,②中y關于x的回歸方程;
(2)已知2018年個人所得稅收人為13.87千億元,用2018年的數(shù)據(jù)驗證(1)中所得兩個回歸方程,哪個更適宜作為y關于時間代號x的回歸方程?
(3)你還能從統(tǒng)計學哪些角度來進一步確認哪個回歸方程更適宜? (只需敘述,不必計算)
附:對于一組數(shù)據(jù)其回歸直線的斜率和截距的最小二乘估計分別為:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的右焦點F為拋物線的焦點,點M為和在第一象限的交點,且.
(Ⅰ)求拋物線的標準方程;
(Ⅱ)若,過焦點F的直線l與相交于A,B兩點,已知,求取得最大值時直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com