已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為
1
2
,它的一個(gè)頂點(diǎn)恰好是拋物線x2=4
3
y
的焦點(diǎn).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若A、B是橢圓C上關(guān)x軸對(duì)稱的任意兩點(diǎn),設(shè)P(-4,0),連接PA交橢圓C于另一點(diǎn)E,求證:直線BE與x軸相交于定點(diǎn)M;
(III)設(shè)O為坐標(biāo)原點(diǎn),在(II)的條件下,過點(diǎn)M的直線交橢圓C于S、T兩點(diǎn),求
OS
OT
的取值范圍.
(1)由拋物線x2=4
3
y
得焦點(diǎn)(0,
3
)

設(shè)橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0)

由題意可得
e=
c
a
=
1-
b2
a2
=
1
2
b=
3
a2=b2+c2
,解得
a=2
b=
3
c=1
,
∴橢圓的方程為
x2
4
+
y2
3
=1

(2)證明:由題意可知直線PA的斜率存在,設(shè)直線PA的方程為y=k(x+4),
聯(lián)立
y=k(x+4)
x2
4
+
y2
3
=1
,消去y得到(4k2+3)x2+32k2x+64k2-12=0   ①
設(shè)點(diǎn)A(x1,y1),E(x2,y2),則B(x1,-y1).
直線BE的方程為y-(-y2)=
y2+y1
x2-x1
(x-x2)

令y=0,則x=x2-
y2(x2-x1)
y2+y1
,
把y1=k(x1+4),y2=k(x2+4)代入上式并整理得x=
2x1x2+4(x1+x2)
x1+x2+8
.②
由①得x1+x2=-
32k2
4k2+3
,x1x2=
64k2-12
4k2+3
,將其代入②并整理得x=
(128k2-24)+4×(-32k2)
-32k2+8(4k2+3)
=-1

∴直線BE與x軸相交于定點(diǎn)M(-1,0).
(3)當(dāng)過點(diǎn)M的直線斜率存在時(shí),設(shè)直線ST的方程為y=m(x+1),且S(x3,y3),T(x4,y4)在橢圓C上,
聯(lián)立
y=m(x+1)
x2
4
+
y2
3
=1
得(4m2+3)x2+8m2x+4m2-12=0,
則△=(8m22-4(4m2+3)(4m2-12)=144(m2+1)>0.
x3+x4=-
8m2
4m2+3
,x3x4=
4m2-12
4m2+3
,
y3y4=m2(x3+1)(x4+1)=m2(x3x4+x3+x4+1)=-
9m2
4m2+3

OS
OT
=x3x4+y3y4=-
5m2+12
4m2+3
=-
5
4
-
33
4(4m2+3)

由m2≥0得
OS
OT
∈[-4,-
5
4
)

當(dāng)過點(diǎn)M的直線斜率不存在時(shí),直線ST的方程為x=-1,S(-1,
3
2
)
T(-1,-
3
2
)
,
此時(shí),
OS
OT
=-
5
4
,
OS
OT
的取值范圍為[-4,-
5
4
]
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),橢圓C任意一點(diǎn)P到兩個(gè)焦點(diǎn)F1(-
3
,0)
F2(
3
,0)
的距離之和為4.
(1)求橢圓C的方程;
(2)設(shè)過(0,-2)的直線l與橢圓C交于A、B兩點(diǎn),且
OA
OB
=0
(O為坐標(biāo)原點(diǎn)),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=2,點(diǎn)P(1,
32
)在橢圓C上.
(I)求橢圓C的方程;
(II)如圖,動(dòng)直線l:y=kx+m與橢圓C有且僅有一個(gè)公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且F1M⊥l,F(xiàn)2M⊥l,求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上且過點(diǎn)P(
3
1
2
)
,離心率是
3
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線l過點(diǎn)E(-1,0)且與橢圓C交于A,B兩點(diǎn),若|EA|=2|EB|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•和平區(qū)一模)已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為
1
2
,它的一個(gè)頂點(diǎn)恰好是拋物線y=
3
12
x2的焦點(diǎn).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若A、B是橢圓C上關(guān)x軸對(duì)稱的任意兩點(diǎn),設(shè)P(-4,0),連接PA交橢圓C于另一點(diǎn)E,求證:直線BE與x軸相交于定點(diǎn)M;
(III)設(shè)O為坐標(biāo)原點(diǎn),在(II)的條件下,過點(diǎn)M的直線交橢圓C于S、T兩點(diǎn),求
OS
OT
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),它的一條準(zhǔn)線為x=-
5
2
,離心率為
2
5
5

(1)求橢圓C的方程;
(2)過橢圓C的右焦點(diǎn)F作直線l交橢圓于A、B兩點(diǎn),交y軸于M點(diǎn),若
MA
=λ1
AF
, 
MB
=λ2
BF
,求λ12的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案