【題目】選修4-5:不等式選講

已知函數(shù).

I)求證:恒成立;

II)若存在實數(shù),使得,求實數(shù)的取值范圍.

【答案】(I)證明見解析;(II).

【解析】

試題分析:(I)借助題設(shè)條件運用分類整合的數(shù)學(xué)思想求解;(II)借助題設(shè)運用絕對值的幾何意義探求.

試題解析:

I當(dāng)時,,..............................2分

當(dāng)時,,..................................4分

當(dāng)時,,故,

綜合圖象可知的最小值為,故恒成立.........................6分

II)由可得:,...........8分

由絕對值的幾何意義,只需................................10分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位需要從甲、乙人中選拔一人參加新崗位培訓(xùn),特別組織了個專項的考試,成績統(tǒng)計如下:

第一項

第二項

第三項

第四項

第五項

甲的成績

乙的成績

(1)根據(jù)有關(guān)統(tǒng)計知識,回答問題:若從甲、乙人中選出人參加新崗培訓(xùn),你認為選誰合適,請說明理由;

(2)根據(jù)有關(guān)槪率知識,解答以下問題:

從甲、乙人的成績中各隨機抽取一個,設(shè)抽到甲的成績?yōu)?/span>,抽到乙的成績?yōu)?/span>,用表示滿足條件的事件,求事件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一名學(xué)生每天騎車上學(xué),從他家里到學(xué)校的途中有6個交通崗,假設(shè)在每個交通崗遇到紅燈的事件是相互獨立的,并且概率都是.

(1)假設(shè)為這名學(xué)生在途中遇到紅燈的次數(shù),求的分布列;

(2)設(shè)為這名學(xué)生在首次停車前經(jīng)過的路口數(shù),求的分布列;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,可見部分如下:

試根據(jù)圖表中的信息解答下列問題:

(1)求全班的學(xué)生人數(shù)及分數(shù)在[70,80)之間的頻數(shù);

(2)為快速了解學(xué)生的答題情況,老師按分層抽樣的方法從位于[70,80),[80,90)和[90,100]分數(shù)段的試卷中抽取8份進行分析,再從中任選3人進行交流,求交流的學(xué)生中,成績位于[70,80)分數(shù)段的人數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為做好2022年北京冬季奧運會的宣傳工作,組委會計劃從某大學(xué)選取若干大學(xué)生志愿者,某記者在該大學(xué)隨機調(diào)查了300名大學(xué)生,以了解他們是否愿意做志愿者工作,得到的數(shù)據(jù)如表所示:

愿意做志愿者工作

不愿意做志愿者工作

合計

男大學(xué)生

180

女大學(xué)生

45

合計

200

(Ⅰ)根據(jù)題意完成表格;

(Ⅱ)是否有的把握認為愿意做志愿者工作與性別有關(guān)?

附:

0.5

0.40

0.25

0.15

0.10

0.455

0.708

1.323

.072

2.706

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的離心率為,連接橢圓的四個頂點得到的四邊形的面積為

(1)求橢圓的方程;

(2)設(shè)橢圓的左焦點為,右焦點為,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段的垂直平分線交于點,求點的軌跡的方程;

(3)設(shè)為坐標原點,取上不同于的點,以為直徑作圓與相交另外一點,求該圓面積的最小值時點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽1人為優(yōu)秀的概率為.

優(yōu)秀

非優(yōu)秀

合計

甲班

10

乙班

30

合計

110

Ⅰ.請完成上面的列聯(lián)表;

Ⅱ.根據(jù)列聯(lián)表的數(shù)據(jù),是否有的把握認為“成績與班級有關(guān)系”.

參考公式與臨界值表:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)).

1求曲線的普通方程;

2經(jīng)過點平面直角坐標系中點作直線交曲線兩點,若恰好為線段的三等分點,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為研究冬季晝夜溫差大小對某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:

組號

1

2

3

4

5

溫差

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.

1)若選取的是第1組與第5組的兩組數(shù)據(jù),請根據(jù)第2組至第4組的數(shù)據(jù),求出關(guān)于的線性回歸方程;

2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

(參考公式:,

查看答案和解析>>

同步練習(xí)冊答案