【題目】在三棱錐中,是邊長為的等邊三角形,,分別是的中點

)求證:平面;

)求證:平面平面;

)求三棱錐的體積.

【答案】)見解析()見解析

【解析】本題主要考查直線與平面平行的判定,以及平面與平面垂直的判定和三棱錐的體積的計算,體積的求解在最近兩年高考中頻繁出現(xiàn),值得重視.

(1)欲證OD∥平面PAC,根據(jù)直線與平面平行的判定定理可知只需證OD與平面PAC內(nèi)一直線平行,而OD∥PA,PA平面PAC,OD平面PAC,滿足定理條件;

(2)欲證平面PAB⊥平面ABC,根據(jù)面面垂直的判定定理可知在平面PAB內(nèi)一直線與平面ABC垂直,而根據(jù)題意可得PO⊥平面ABC;

(3)根據(jù)OP垂直平面ABC得到OP為三棱錐P-ABC的高,根據(jù)三棱錐的體積公式可求出三棱錐P-ABC的體積.

解:分別為的中點,

平面,平面

平面. ………………5分

)連結(jié),

,中點,,

,.

同理, .

,,

,.

,,,

平面.

平面,平面平面.…………………10

可知垂直平面

為三棱錐的高,且

. …………………………14分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列和等比數(shù)列滿足, ,

1的通項公式;

2求和:

【答案】1;(2

【解析】試題分析:(1)根據(jù)等差數(shù)列 ,列出關(guān)于首項公差的方程組,解方程組可得的值,從而可得數(shù)列的通項公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項 ,公比 的方程組,解得、的值,求出數(shù)列的通項公式,然后利用等比數(shù)列求和公式求解即可.

試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.

所以an=2n1.

(2)設(shè)等比數(shù)列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.

解得q2=3.所以.

從而.

型】解答
結(jié)束】
18

【題目】已知命題:實數(shù)滿足,其中;命題:方程表示雙曲線.

(1)若,且為真,求實數(shù)的取值范圍;

(2)若的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三年級實驗班與普通班共1000名學(xué)生,其中實驗班學(xué)生200人,普通班學(xué)生800人,現(xiàn)將高三一?荚嚁(shù)學(xué)成績制成如圖所示頻數(shù)分布直方圖,按成績依次分為5組,其中第一組([0, 30)),第二組([30, 60)),第三組([60, 90)),的頻數(shù)成等比數(shù)列,第一組與第五組([120, 150))的頻數(shù)相等,第二組與第四組([90, 120))的頻數(shù)相等。

(1)求第三組的頻率;

(2)已知實驗班學(xué)生成績在第五組,在第四組,剩下的都在第三組,試估計實驗班學(xué)生數(shù)學(xué)成績的平均分;

(3)在(2)的條件下,按分層抽樣的方法從第5組中抽取5人進(jìn)行經(jīng)驗交流,再從這5人中隨機(jī)抽取3人在全校師生大會上作經(jīng)驗報告,求抽取的3人中恰有一個普通班學(xué)生的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為角A,B,C的對邊.若acosB=3,bcosA=l,且A﹣B=
(1)求邊c的長;
(2)求角B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,底面的菱形,側(cè)面為正三角形,其所在平面垂直于底面.

(1)若為線段的中點,求證:平面;

(2)若為邊的中點,能否在棱上找到一點,使平面平面?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓錐曲線的方程為

)在所給坐標(biāo)系中畫出圓錐曲線

)圓錐曲線的離心率__________

)如果頂點在原點的拋物線與圓錐曲線有一個公共焦點,且過第一象限,則

i)交點的坐標(biāo)為__________

ii)拋物線的方程為__________

iii)在圖中畫出拋物線的準(zhǔn)線.

)已知矩形各頂點都在圓錐曲線上,則矩形面積的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程

)若已知方程表示橢圓,則的取值范圍為__________

)語句是語句方程表示雙曲線的_____________

A.充分不必要條件 B.必要不充分條件 C.充在條件 D.既不充分也不必要條件

)根據(jù)()的結(jié)論,以如果那么的形式寫出一個正確命題,記作命題,則

命題__________

)套用量詞命題的格式: , ,改寫()中命題,

表述形式為:__________

)寫出()中命題的逆命題,記作命題,則

命題__________

)判斷()中命題真假,并陳述判斷理由.

命題為__________命題,因為__________

)若已知方程表示橢圓,則該橢圓兩個焦點的坐標(biāo)分別為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,四邊形為矩形, 為等腰三角形, ,平面平面,且, 分別為的中點.

(1)證明: 平面;

(2)證明:平面平面

(3)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足.

(1)若),數(shù)列為遞增數(shù)列,求數(shù)列的通項公式;

(2)若),數(shù)列為遞增數(shù)列,數(shù)列為遞減數(shù)列,且,求數(shù)列的通項公式.

查看答案和解析>>

同步練習(xí)冊答案