【題目】四棱錐中,底面是的菱形,側面為正三角形,其所在平面垂直于底面.
(1)若為線段的中點,求證:平面;
(2)若為邊的中點,能否在棱上找到一點,使平面平面?并證明你的結論.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的右焦點為, 為直線上一點,線段交于點,若,則__________.
【答案】
【解析】
由條件橢圓: ∴
橢圓的右焦點為F,可知F(1,0),
設點A的坐標為(2,m),則=(1,m),
∴,
∴點B的坐標為,
∵點B在橢圓C上,
∴,解得:m=1,
∴點A的坐標為(2,1),.
答案為: .
【題型】填空題
【結束】
16
【題目】四棱錐中, 面, 是平行四邊形, , ,點為棱的中點,點在棱上,且,平面與交于點,則異面直線與所成角的正切值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (>b>0)的左、右頂點分別為A1、A2,上、下頂點分別為B2、B1,O為坐標原點,四邊形A1B1A2B2的面積為4,且該四邊形內切圓的方程為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若M、N是橢圓C上的兩個不同的動點,直線OM、ON的斜率之積等于,試探求△OMN的面積是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
(1)證明函數(shù)f ( x )的圖象關于軸對稱;
(2)判斷在上的單調性,并用定義加以證明;
(3)當x∈[1,2]時函數(shù)f (x )的最大值為,求此時a的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的內角A、B、C所對的邊長分別為a、b、c,且acos B=3,bsin A=4.
(1)求邊長a;
(2)若△ABC的面積S=10,求△ABC的周長l.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】遼寧號航母紀念章從2012年10月5日起開始上市,通過市場調查,得到該紀念章每枚的市場價(單位:元)與上市時間(單位:天)的數(shù)據如下:
上市時間天 | |||
市場價元 |
(1)根據上表數(shù)據,從下列函數(shù)中選取一個恰當?shù)暮瘮?shù)描述遼寧號航母紀念章的市場價與上市時間的變化關系:①;②;③;
(2)利用你選取的函數(shù),求遼寧號航母紀念章市場價最低時的上市天數(shù)及最低的價格;
(3)設你選取的函數(shù)為,若對任意實數(shù),關于的方程恒有個想異實數(shù)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校高一數(shù)學考試后,對分(含分)以上的成績進行統(tǒng)計,其頻率分布直方圖如圖所示,分數(shù)在分的學生人數(shù)為人,
(1)求這所學校分數(shù)在分的學生人數(shù);
(2)請根據頻率發(fā)布直方圖估計這所學校學生分數(shù)在分的學生的平均成績;
(3)為進“步了解學生的學習情況,按分層抽樣方法從分數(shù)在分和分的學生中抽出人,從抽出的學生中選出人分別做問卷和問卷,求分的學生做問卷,分的學生做問卷的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高一年級學生全部參加了體育科目的達標測試,現(xiàn)從中隨機抽取40名學生的測試成績,整理數(shù)據并按分數(shù)段,,,,,進行分組.已知測試分數(shù)均為整數(shù),現(xiàn)用每組區(qū)間的中點值代替該組中的每個數(shù)據,則得到體育成績的折線圖如下:
(1)若體育成績大于或等于70分的學生為“體育良好”,已知該校高一年級有1000名學生,試估計該校高一年級學生“體育良好”的人數(shù);
(2)用樣本估計總體的思想,試估計該校高一年級學生達標測試的平均分;
(3)假設甲、乙、丙三人的體育成績分別為,且,,,當三人的體育成績方差最小時,寫出的所有可能取值(不要求證明)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com