【題目】已知橢圓: 的右焦點為, 為直線上一點,線段交于點,若,則__________.
【答案】
【解析】
由條件橢圓: ∴
橢圓的右焦點為F,可知F(1,0),
設點A的坐標為(2,m),則=(1,m),
∴,
∴點B的坐標為,
∵點B在橢圓C上,
∴,解得:m=1,
∴點A的坐標為(2,1),.
答案為: .
【題型】填空題
【結束】
16
【題目】四棱錐中, 面, 是平行四邊形, , ,點為棱的中點,點在棱上,且,平面與交于點,則異面直線與所成角的正切值為__________.
科目:高中數學 來源: 題型:
【題目】生于瑞士的數學巨星歐拉在1765年發(fā)表的《三角形的幾何學》一書中有這樣一個定理:“三角形的外心、垂心和重心都在同一直線上!边@就是著名的歐拉線定理,在中,分別是外心、垂心和重心,為邊的中點,下列四個結論:(1);(2);(3);(4)正確的個數為( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的前項和為,點在直線上.數列滿足且,前9項和為153.
(1)求數列、的通項公式;
(2)設,數列的前項和為,求及使不等式對一切都成立的最小正整數的值;
(3)設,問是否存在,使得成立?若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“”是“對任意的正數, ”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
【答案】A
【解析】分析:根據基本不等式,我們可以判斷出“”?“對任意的正數x,2x+≥1”與“對任意的正數x,2x+≥1”?“a=
”真假,進而根據充要條件的定義,即可得到結論.
解答:解:當“a=”時,由基本不等式可得:
“對任意的正數x,2x+≥1”一定成立,
即“a=”?“對任意的正數x,2x+≥1”為真命題;
而“對任意的正數x,2x+≥1的”時,可得“a≥”
即“對任意的正數x,2x+≥1”?“a=”為假命題;
故“a=”是“對任意的正數x,2x+≥1的”充分不必要條件
故選A
【題型】單選題
【結束】
9
【題目】如圖是一幾何體的平面展開圖,其中為正方形, , 分別為, 的中點,在此幾何體中,給出下面四個結論:①直線與直線異面;②直線與直線異面;③直線平面;④平面平面.
其中一定正確的選項是( )
A. ①③ B. ②③ C. ②③④ D. ①③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設為雙曲線: 的右焦點,過坐標原點的直線依次與雙曲線的左、右支交于點,若, ,則該雙曲線的離心率為( )
A. B. C. D.
【答案】B
【解析】,設雙曲線的左焦點為,連接,由對稱性可知, 為矩形,且,故,故選B.
【 方法點睛】本題主要考查雙曲線的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:①直接求出,從而求出;②構造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解;④根據圓錐曲線的統(tǒng)一定義求解.
【題型】單選題
【結束】
12
【題目】點到點, 及到直線的距離都相等,如果這樣的點恰好只有一個,那么實數的值是( )
A. B. C. 或 D. 或
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列和等比數列滿足, , .
(1)求的通項公式;
(2)求和: .
【答案】(1);(2).
【解析】試題分析:(1)根據等差數列的, ,列出關于首項、公差的方程組,解方程組可得與的值,從而可得數列的通項公式;(2)利用已知條件根據題意列出關于首項 ,公比 的方程組,解得、的值,求出數列的通項公式,然后利用等比數列求和公式求解即可.
試題解析:(1)設等差數列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設等比數列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以.
從而.
【題型】解答題
【結束】
18
【題目】已知命題:實數滿足,其中;命題:方程表示雙曲線.
(1)若,且為真,求實數的取值范圍;
(2)若是的充分不必要條件,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形, ,側面底面, , , , 分別為, 的中點,點在線段上.
(1)求證: 平面;
(2)若直線與平面所成的角和直線與平面所成的角相等,求的值.
【答案】(1)證明見解析;(2) .
【解析】試題分析:
(Ⅰ)在平行四邊形中,由條件可得,進而可得。由側面底面,得底面,故得,所以可證得平面.(Ⅱ)先證明平面平面,由面面平行的性質可得平面.(Ⅲ)建立空間直角坐標系,通過求出平面的法向量,根據線面角的向量公式可得。
試題解析:
(Ⅰ)證明:在平行四邊形中,
∵, , ,
∴,
∴,
∵, 分別為, 的中點,
∴,
∴,
∵側面底面,且,
∴底面,
又底面,
∴,
又, 平面, 平面,
∴平面.
(Ⅱ)證明:∵為的中點, 為的中點,
∴,
又平面, 平面,
∴平面,
同理平面,
又, 平面, 平面,
∴平面平面,
又平面,
∴平面.
(Ⅲ)解:由底面, ,可得, , 兩兩垂直,
建立如圖空間直角坐標系,
則, , , , , ,
所以, , ,
設,則,
∴, ,
易得平面的法向量,
設平面的法向量為,則:
由,得,
令,得,
∵直線與平面所成的角和此直線與平面所成的角相等,
∴,即,
∴,
解得或(舍去),
故.
點睛:用向量法確定空間中點的位置的方法
根據題意建立適當的空間直角坐標系,由條件確定有關點的坐標,運用共線向量用參數(參數的范圍要事先確定)確定出未知點的坐標,根據向量的運算得到平面的法向量或直線的方向向量,根據所給的線面角(或二面角)的大小進行運算,進而求得參數的值,通過與事先確定的參數的范圍進行比較,來判斷參數的值是否符合題意,進而得出點是否存在的結論。
【題型】解答題
【結束】
21
【題目】如圖,橢圓上的點到左焦點的距離最大值是,已知點在橢圓上,其中為橢圓的離心率.
(1)求橢圓的方程;
(2)過原點且斜率為的直線交橢圓于、兩點,其中在第一象限,它在軸上的射影為點,直線交橢圓于另一點.證明:對任意的,點恒在以線段為直徑的圓內.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱錐中,底面是的菱形,側面為正三角形,其所在平面垂直于底面.
(1)若為線段的中點,求證:平面;
(2)若為邊的中點,能否在棱上找到一點,使平面平面?并證明你的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com