【題目】如圖,在四棱錐中,側棱底面,底面為長方形,且的中點,作于點.

(1)證明:平面;

(2)若三棱錐的體積為,求二面角的正弦值.

【答案】(1)見解析;(2).

【解析】分析:(1)推導出,,從而平面,進而,再證出,從而平面,,再由,能證明平面
(II)由兩兩垂直,以為坐標原點,建立空間直角坐標系,利用向量法能求出二面角的正弦值.

詳解:

(1)證明:∵底面平面,

由于底面為長方形

,而,

平面

平面

,中點,

,

,

平面

平面

(2)由題意易知兩兩垂直,以為坐標原點,

建立如圖空間直角坐標系,可得

,則有

設平面的法向量,由,則

,則

由(1)平面,

為平面的法向量

設二面角,則

所以二面角的正弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中(為坐標原點),已知兩點,,且三角形的內切圓為圓,從圓外一點向圓引切線,為切點。

(1)求圓的標準方程.

(2)已知點,且,試判斷點是否總在某一定直線上,若是,求出直線的方程;若不是,請說明理由.

(3)已知點在圓上運動,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的右焦點為, 為直線上一點,線段于點,若,則__________

【答案】

【解析】

由條件橢圓

橢圓的右焦點為F,可知F(1,0),

設點A的坐標為(2,m),則=1,m),

,

B的坐標為

B在橢圓C上,

,解得:m=1,

A的坐標為(2,1),.

答案為: .

型】填空
束】
16

【題目】四棱錐中, , 是平行四邊形, , ,點為棱的中點,點在棱上,且,平面交于點,則異面直線所成角的正切值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等比數(shù)列中,,公比,用表示它的前項之積:,則中最大的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 平面, , , 的中點.

(Ⅰ)證明: 平面;

(Ⅱ)求多面體的體積;

(Ⅲ)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(改編)已知正數(shù)數(shù)列的前項和為,且滿足;在數(shù)列中,

(1)求數(shù)列的通項公式;

(2)設,數(shù)列的前項和為. 若對任意,存在實數(shù),使恒成立,求的最小值;

(3)記數(shù)列的前項和為,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C b0)的左、右頂點分別為A1、A2,上、下頂點分別為B2、B1O為坐標原點,四邊形A1B1A2B2的面積為4,且該四邊形內切圓的方程為

(Ⅰ)求橢圓C的方程;

(Ⅱ)若MN是橢圓C上的兩個不同的動點,直線OM、ON的斜率之積等于,試探求△OMN的面積是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

1)證明函數(shù)f ( x )的圖象關于軸對稱;

2)判斷上的單調性,并用定義加以證明;

3)當x12]時函數(shù)f (x )的最大值為,求此時a的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校高一數(shù)學考試后,對分(含分)以上的成績進行統(tǒng)計,其頻率分布直方圖如圖所示,分數(shù)在分的學生人數(shù)為人,

(1)求這所學校分數(shù)在分的學生人數(shù);

(2)請根據(jù)頻率發(fā)布直方圖估計這所學校學生分數(shù)在分的學生的平均成績;

(3)為進“步了解學生的學習情況,按分層抽樣方法從分數(shù)在分和分的學生中抽出人,從抽出的學生中選出人分別做問卷和問卷,求分的學生做問卷,分的學生做問卷的概率.

查看答案和解析>>

同步練習冊答案