【題目】將函數(shù) 的圖象向左平移 個單位,再向上平移1個單位,得到g(x)的圖象.若g(x1)g(x2)=9,且x1 , x2∈[﹣2π,2π],則2x1﹣x2的最大值為(
A.
B.
C.
D.

【答案】A
【解析】解:函數(shù) 的圖象向左平移 個單位,可得y= 的圖象, 再向上平移1個單位,得到g(x)= +1的圖象.
若g(x1)g(x2)=9,且x1 , x2∈[﹣2π,2π],
則g(x1)=g(x2)=3,
,

由x1 , x2∈[﹣2π,2π],得:x1 , x2∈{﹣ ,﹣ , },
當(dāng)x1= ,x2=﹣ 時,2x1﹣x2取最大值
故選:A
【考點精析】利用函數(shù)的最值及其幾何意義對題目進行判斷即可得到答案,需要熟知利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,若函數(shù) 處與直線 相切.
(Ⅰ)求實數(shù) 的值;
(Ⅱ)求函數(shù) 上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l與拋物線y2=4x相交于不同的A、B兩點.
(1)如果直線l過拋物線的焦點,求 · 的值;
(2)如果 · =-4,證明直線l必過一定點,并求出該定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線y2=4x的焦點F的直線交拋物線于A,B兩點,且|AF|=2|BF|,則直線AB的斜率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓過圓與直線的交點,且圓上任意一點關(guān)于直線 的對稱點仍在圓上.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)若圓軸正半軸的交點為,直線與圓交于兩點(異于點),且點滿足,,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某初級中學(xué)有三個年級,各年級男、女人數(shù)如下表:

初一年級

初二年級

初三年級

女生

370

200

男生

380

370

300

已知在全校學(xué)生中隨機抽取1名,抽到初二年級女生的概率是0.19.
(1)求 的值;
(2)用分層抽樣的方法在初三年級中抽取一個容量為5的樣本,求該樣本中女生的人數(shù);
(3)用隨機抽樣的方法從初二年級女生中選出8人,測量它們的左眼視力,結(jié)果如下:1.2,1.5,1.2,1.5,1.5,1.3,1.0,1.2.把這8人的左眼視力看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過0.1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點為 , 是拋物線上橫坐標(biāo)為4,且位于 軸上方的點, 到拋物線準(zhǔn)線的距離等于5,過 垂直于 軸,垂足為 , 的中點為
(1)求拋物線的方程;
(2)若過 ,垂足為 ,求點 的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有蒲(水生植物名)生一日,長三尺;莞(植物名,俗稱水蔥、席子草)生一日,長一尺.蒲生日自半,莞生日自倍.問幾何日而長等?”意思是:今有蒲生長1日,長為3尺;莞生長1日,長為1尺.蒲的生長逐日減半,莞的生長逐日增加1倍.若蒲、莞長度相等,則所需的時間約為日.(結(jié)果保留一位小數(shù),參考數(shù)據(jù):lg2≈0.30,lg3≈0.48)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的右焦點為 ,上頂點為 , 周長為 ,離心率為 .
(1)求橢圓 的方程;
(2)若點 是橢圓 上第一象限內(nèi)的一個點,直線 過點 且與直線 平行,直線 與橢圓 交于 兩點,與 交于點 ,是否存在常數(shù) ,使 .若存在,求出 的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案