【題目】如圖,三棱柱的各棱長均為2, 面,E,F分別為棱的中點(diǎn).
(1)求證:直線BE∥平面;
(2)平面與直線AB交于點(diǎn)M,指出點(diǎn)M的位置,說明理由,并求三棱錐的體積.
【答案】(1)見解析;(2) .
【解析】試題分析:(1)取A1C1的中點(diǎn)G,由平幾知識確定四邊形BFGE是平行四邊形.即得BE∥FG,再根據(jù)線面平行判定定理得結(jié)論,(2)由線面平行性質(zhì)定理得AC∥FM,即得M為棱AB的中點(diǎn).根據(jù)等體積法得,再根據(jù)錐體體積公式求體積.
試題解析:(1)取A1C1的中點(diǎn)G,連接EG,F(xiàn)G,
于是EG,又BF,
所以BFEG.
所以四邊形BFGE是平行四邊形.
所以BE∥FG,
而,
所以直線BE∥平面.
(2)M為棱AB的中點(diǎn).
理由如下:
因?yàn)?/span>AC∥, ,
所以直線AC∥平面,又,
所以AC∥FM.又F為棱的中點(diǎn).
所以M為棱AB的中點(diǎn).
三角形BFM的面積,
所以三棱錐的體積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費(fèi)用支出x(萬元)與銷售額y(萬元)之間有如下的對應(yīng)數(shù)據(jù):
(1)畫出散點(diǎn)圖;
(2)求回歸直線方程;
(3)據(jù)此估計廣告費(fèi)用為9萬元時,銷售收入y的值.
注:①參考公式:線性回歸方程系數(shù)公式;
②參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面是追蹤調(diào)查200個某種電子元件壽命(單位:)頻率分布直方圖,如圖:
其中300-400、400-500兩組數(shù)據(jù)丟失,下面四個說法中有且只有一個與原數(shù)據(jù)相符,這個說法是( )
①壽命在300-400的頻數(shù)是90;
②壽命在400-500的矩形的面積是0.2;
③用頻率分布直方圖估計電子元件的平均壽命為:
④壽命超過的頻率為0.3
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長均相等的四棱錐中, 為底面正方形的中心, ,分別為側(cè)棱,的中點(diǎn),有下列結(jié)論正確的有:( )
A.∥平面B.平面∥平面
C.直線與直線所成角的大小為D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了反映國民經(jīng)濟(jì)各行業(yè)對倉儲物流業(yè)務(wù)的需求變化情況,以及重要商品庫存變化的動向,中國物流與采購聯(lián)合會和中儲發(fā)展股份有限公司通過聯(lián)合調(diào)查,制定了中國倉儲指數(shù).如圖所示的折線圖是2016年1月至2017年12月的中國倉儲指數(shù)走勢情況.
根據(jù)該折線圖,下列結(jié)論正確的是
A. 2016年各月的倉儲指數(shù)最大值是在3月份
B. 2017年1月至12月的倉儲指數(shù)的中位數(shù)為54%
C. 2017年1月至4月的倉儲指數(shù)比2016年同期波動性更大
D. 2017年11月的倉儲指數(shù)較上月有所回落,顯示出倉儲業(yè)務(wù)活動仍然較為活躍,經(jīng)濟(jì)運(yùn)行穩(wěn)中向好
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,圖①是棱長為1的小正方體,圖②,③是由這樣的小正方體擺放而成.按照這樣的方法繼續(xù)擺放,由上而下分別將第1層,第2層,…,第層的小正方體的個數(shù)記為,解答下列問題:
(1)按照要求填表:
1 | 2 | 3 | 4 | … | |
1 | 3 | 6 | _ | … |
(2)__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若AC⊥BC,AC=BC=1,點(diǎn)P是△ABC內(nèi)一點(diǎn),則的取值范圍是( )
A. (﹣,0) B. (0,) C. (﹣,) D. (﹣1,1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com