()(本題14分)

      已知數(shù)列的首項,通項,且成等差數(shù)列。求:

    (Ⅰ)p,q的值;

(Ⅱ) 數(shù)列n項和的公式。

(Ⅰ)p=1,q=1

 (Ⅱ)


解析:

本題主要考查等差數(shù)列和等比數(shù)列的基本知識,考查運算及推理能力。滿分14分。

    (Ⅰ)由

        p=1,q=1

    (Ⅱ)解:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆海南省高二上期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題14分)如圖,一水渠的橫斷面是拋物線形,O是拋物線的頂點,口寬EF=4米,高3米,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,(1)求拋物線方程.(2)若將水渠橫斷面改造成等腰梯形ABCD,要求高度不變,只挖土,不填土,求梯形ABCD的下底AB多大時,所挖的土最少?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三回頭考聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題14分)口袋內(nèi)有)個大小相同的球,其中有3個紅球和個白球.已知從

口袋中隨機取出一個球是紅球的概率是,且。若有放回地從口袋中連續(xù)地取四次球(每次只取一個球),在四次取球中恰好取到兩次紅球的概率大于

(Ⅰ)求;

(Ⅱ)不放回地從口袋中取球(每次只取一個球),取到白球時即停止取球,記為第一次取到白球時的取球次數(shù),求的分布列和期望。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題14分)向量,設(shè)函數(shù).

(1)求的最小正周期與單調(diào)遞減區(qū)間;

(2)在中,分別是角的對邊,若的面積

,求a的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇省無錫市高一下期中數(shù)學(xué)(藝術(shù))試卷(解析版) 題型:解答題

(本題14分)已知a,b實數(shù),設(shè)函數(shù)

(1)若關(guān)于x的不等式的解集為,求實數(shù)的值;

(2) 設(shè)b為已知的常數(shù),且,求滿足條件的a的范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省高三第一次月考理科數(shù)學(xué)卷 題型:解答題

(本題14分)

 如圖所示,在長方體中,AB=AD=1,AA1=2,M是棱CC1的中點

(1)求異面直線A1M和C1D1所成的角的正切值;

(2)證明:直線BM⊥平面A1B1M1

                   

 

 

查看答案和解析>>

同步練習(xí)冊答案