【題目】已知某運(yùn)動員每次投籃命中的概率都是40%.現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動員三次投籃恰有一次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機(jī)數(shù)作為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.據(jù)此估計(jì),該運(yùn)動員三次投籃恰有一次命中的概率為(  )
A.0.25
B.0.2
C.0.35
D.0.4

【答案】D
【解析】解:根據(jù)題意,因?yàn)?,2,3,4表示投籃命中,其它為不中,
當(dāng)三次投籃恰有一次命中時(shí),
就是三個數(shù)字xyz中只有一個數(shù)字在集合{1,2,3,4},
考查這20組數(shù)據(jù),以下8個數(shù)據(jù)符合題意,按次序分別為:
925,458,683,257,027,488,730,537,
所以,其概率P(A)==0.4,
故選D.
當(dāng)三次投籃恰有一次命中時(shí),就是三個數(shù)字xyz中只有一個數(shù)字在集合{1,2,3,4},再逐個考察個數(shù)據(jù)即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OPQ是半徑為1,圓心角為 的扇形,C是扇形弧上的動點(diǎn),ABCD是扇形的內(nèi)接矩形.記∠COP=α,則矩形ABCD的面積最大是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)O為坐標(biāo)原點(diǎn),動點(diǎn)M在橢圓C 上,過M作x軸的垂線,垂足為N點(diǎn)P滿足

(1) 求點(diǎn)P的軌跡方程;

(2)設(shè)點(diǎn) 在直線x=-3上,且.證明過點(diǎn)P且垂直于OQ的直線l過C的左焦點(diǎn)F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)镽的偶函數(shù)f(x)滿足對于任意實(shí)數(shù)x,都有f(1+x)=f(1﹣x),且當(dāng)0≤x≤1時(shí),f(x)=3x+1
(1)求證:函數(shù)f(x)是周期函數(shù);
(2)當(dāng)x∈[1,3]時(shí),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線y=a分別與曲線y=2(x+1),y=x+lnx交于A、B,則|AB|的最小值為( )
A.3
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),設(shè)M(x1 , y1)、N(x2 , y2)為不同的兩點(diǎn),直線l的方程為ax+by+c=0,設(shè) .有下列四個說法:
①存在實(shí)數(shù)δ,使點(diǎn)N在直線l上;
②若δ=1,則過M、N兩點(diǎn)的直線與直線l平行;
③若δ=﹣1,則直線l經(jīng)過線段MN的中點(diǎn);
④若δ>1,則點(diǎn)M、N在直線l的同側(cè),且直線l與線段MN的延長線相交.
上述說法中,所有正確說法的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】化簡求值:
(1)(1+tan2θ)cos2θ
(2)已知 ,求2+sinθcosθ﹣cos2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠家具車間造A、B型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A、B型桌子分別需要1小時(shí)和2小時(shí),漆工油漆一張A、B型桌子分別需要3小時(shí)和1小時(shí);又知木工、漆工每天工作分別不得超過8小時(shí)和9小時(shí),而工廠造一張A、B型桌子分別獲利潤2千元和3千元,試問工廠每天應(yīng)生產(chǎn)A、B型桌子各多少張,才能獲得利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M的圓心M在x軸上,半徑為1,直線 ,被圓M所截的弦長為 ,且圓心M在直線l的下方.
(I)求圓M的方程;
(II)設(shè)A(0,t),B(0,t+6)(﹣5≤t≤﹣2),若圓M是△ABC的內(nèi)切圓,求△ABC的面積S的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案