用平行于棱錐底面的平面去截棱錐,則截面與底面之間的部分叫棱臺。
如圖,在四棱臺中,下底是邊長為的正方形,上底是邊長為1的正方形,側(cè)棱⊥平面,.

(Ⅰ)求證:平面;
(Ⅱ)求平面與平面夾角的余弦值.
以D為原點,以DA、DC、DD1所在直線分別為x軸,z軸建立空間直角坐標系D—xyz如圖,則有A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2).   
(Ⅰ)設(shè)得到,進一步得到平面;(Ⅱ)二面角的余弦值為.

試題分析:以D為原點,以DA、DC、DD1所在直線分別為x軸,z軸建立空間直角坐標系D—xyz如圖,則有A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2).    3分

(Ⅰ)證明:設(shè)則有所以,,∴平面;   6分
(Ⅱ)解:
設(shè)為平面的法向量,

于是   8分
同理可以求得平面的一個法向量,   10分

∴二面角的余弦值為.    12分
點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟。在空間垂直關(guān)系明確的情況下,通過建立適當(dāng)?shù)目臻g直角坐標系,利用向量可簡化證明過程。本題難度不大。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,為圓的直徑,點、在圓上,,矩形所在的平面和圓所在的平面互相垂直,且,.

(1)求證:平面;
(2)設(shè)的中點為,求證:平面
(3)設(shè)平面將幾何體分成的兩個錐體的體積分別為,,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖是正方體的平面展開圖,在這個正方體中,①平面;②平面;③平面平面;④平面平面.以上四個命題中,正確命題的序號是            。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

四面體SABC,E,F,G分別是棱SC,AB,SB的中點,若異面直線SABC所成的角等于45º,則∠EGF等于(    )
A.90ºB.60º或120ºC.45ºD.45º或135º

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知三棱錐的底面是直角三角形,且,平面,是線段的中點,如圖所示.

(Ⅰ)證明:平面;
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在四棱錐中,底面為矩
形,⊥平面,,上的點,若⊥平面

(1)求證:的中點;
(2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(理科)(本小題滿分12分)如圖分別是正三棱臺ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點.

(1)求正三棱臺ABC-A1B1C1的體積;
(2)求平面EA1B1與平面A1B1C1的夾角的余弦;
(3)若P是棱A1C1上一點,求CP+PB1的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,點P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,則PB與AC所成的角是(  )
A.90°  B.60° 
C.45°  D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,平面α⊥平面β,Aα,Bβ,AB與平面α所成的角為,過A、B分別作兩平面交線的垂線,垂足為A′、B′,若,則AB與平面β所成的角的正弦值是(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案