【題目】某電視傳媒公司為了了解某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該類體育節(jié)目時(shí)間的頻率分布直方圖,其中收看時(shí)間分組區(qū)間是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].將日均收看該類體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.則抽取的100名觀眾中“體育迷”有名.

【答案】15
【解析】解:由頻率分布直方圖得:
“體育迷”的頻率為:1﹣(0.012+0.020+0.025+0.028)×10=0.15,
∴抽取的100名觀眾中“體育迷”有100×0.15=15名.
所以答案是:15.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用頻率分布直方圖,掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,且
(1)求實(shí)數(shù)c的值;
(2)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列{an}的公比q≠1,則下面說(shuō)法中不正確的是(
A.{an+2+an}是等比數(shù)列
B.對(duì)于k∈N* , k>1,ak1+ak+1≠2ak
C.對(duì)于n∈N* , 都有anan+2>0
D.若a2>a1 , 則對(duì)于任意n∈N* , 都有an+1>an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}滿足a1+3a2+32a3+…+3n1an= ,n∈N*
(1)求數(shù)列{an}的通項(xiàng);
(2)設(shè) ,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分14分)某學(xué)校為了支持生物課程基地研究植物生長(zhǎng),計(jì)劃利用學(xué)?盏亟ㄔ煲婚g室內(nèi)面積為900m2的矩形溫室,在溫室內(nèi)劃出三塊全等的矩形區(qū)域,分別種植三種植物,相鄰矩形區(qū)域之間間隔1m,三塊矩形區(qū)域的前、后與內(nèi)墻各保留 1m 寬的通道,左、右兩塊矩形區(qū)域分別與相鄰的左右內(nèi)墻保留 3m 寬的通道,如圖.設(shè)矩形溫室的室內(nèi)長(zhǎng)為(m),三塊種植植物的矩形區(qū)域的總面積(m2).

(1)求關(guān)于的函數(shù)關(guān)系式;

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B是單位圓上的兩點(diǎn),A,B兩點(diǎn)分別在第一、二象限,點(diǎn)C是圓與x軸正半軸的交點(diǎn),角∠AOB= ,若點(diǎn)A的坐標(biāo)為( , ),記∠COA=α.

(1)求 的值;
(2)求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(x1 , f(x1),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)圖象上的任意兩點(diǎn),且初相φ的終邊經(jīng)過(guò)點(diǎn)P(1,﹣ ),若|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[0, ]時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)x∈[0, ]時(shí),不等式mf(x)+2m≥f(x)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知p:方程x2+mx+1=0有兩個(gè)不等的負(fù)根;q:方程4x2+4(m﹣2)x+1=0無(wú)實(shí)根,若“p或q”真“p且q”為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,側(cè)面PAD⊥底面ABCD,∠BCD=60°,PA=PD= ,E是BC中點(diǎn),點(diǎn)Q在側(cè)棱PC上.
(1)求證:AD⊥PB;
(2)若Q是PC中點(diǎn),求二面角E﹣DQ﹣C的余弦值;
(3)若 ,當(dāng)PA∥平面DEQ時(shí),求λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案