【題目】如圖,點(diǎn)A,B是單位圓上的兩點(diǎn),A,B兩點(diǎn)分別在第一、二象限,點(diǎn)C是圓與x軸正半軸的交點(diǎn),角∠AOB= ,若點(diǎn)A的坐標(biāo)為( , ),記∠COA=α.

(1)求 的值;
(2)求點(diǎn)B的坐標(biāo).

【答案】
(1)解:∵A的坐標(biāo)為( , ),根據(jù)三角函數(shù)的定義可知:sinα= ,cosα= ,

= =32


(2)解:∵角∠AOB= ,

∴cos∠COB=cos(α+ )=cosαcos ﹣sinαsin =﹣

∴sin∠COB=sin(α+ )=sinαcos +cosαsin = ,

∴點(diǎn)B(﹣ ,


【解析】(1)由已知,根據(jù)三角函數(shù)的定義可求sinα,cosα的值,利用二倍角公式即可計(jì)算得解.(2)利用特殊角的三角函數(shù)值,兩角和的正弦函數(shù)余弦函數(shù)公式分別求出cos∠COB,sin∠COB的值即可得解.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解同角三角函數(shù)基本關(guān)系的運(yùn)用(同角三角函數(shù)的基本關(guān)系:;;(3) 倒數(shù)關(guān)系:).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)

設(shè)ABC三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a,b,c. 已知C=,acosA=bcosB.

(1)求角A的大;

(2)如圖,在ABC的外角ACD內(nèi)取一點(diǎn)P,使得PC=2.過點(diǎn)P分別作直線CA、CD的垂線PM、PN,垂足分別是M、N.設(shè)PCA=α,求PM+PN的最大值及此時(shí)α的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分為16已知函數(shù)

1,求函數(shù)的極值,并指出極大值還是極小值;

2,求函數(shù)上的最值;

3,求證:在區(qū)間上,函數(shù)的圖象在的圖象下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某客運(yùn)公司用A,B兩種型號(hào)的車輛承擔(dān)甲、乙兩地間的長途客運(yùn)業(yè)務(wù),每車每天往返一次.A,B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運(yùn)成本分別為1600元/輛和2400元/輛.公司擬組建一個(gè)不超過21輛車的客運(yùn)車隊(duì),并要求B型車不多于A型車7輛.若每天要以不少于900人運(yùn)完從甲地去乙地的旅客,且使公司從甲地去乙地的營運(yùn)成本最小,那么應(yīng)配備A型車、B型車各多少輛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視傳媒公司為了了解某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該類體育節(jié)目時(shí)間的頻率分布直方圖,其中收看時(shí)間分組區(qū)間是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].將日均收看該類體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.則抽取的100名觀眾中“體育迷”有名.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如圖部分頻率分布直方圖.觀察圖形的信息,回答下列問題.

(1)從該校高三模擬考試的成績中隨機(jī)抽取一份,利用隨機(jī)事件頻率估計(jì)概率,求數(shù)學(xué)分?jǐn)?shù)恰在[120,130)內(nèi)的頻率;
(2)估計(jì)本次考試的中位數(shù);
(3)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:x∈[1,2],x2﹣a≥0,命題q:x0∈R,使得x02+(a﹣1)x0﹣1<0,若p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面有五個(gè)命題:
①函數(shù)y=sin4θ﹣cos4θ的最小正周期是π;
②終邊在y軸上的角的集合是 ;
③把 的圖象向右平移 得到y(tǒng)=3sin2x的圖象;
④函數(shù) 在[0,π]是減函數(shù);
其中真命題的序號(hào)是(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)對(duì)于任意實(shí)數(shù)x,不等式|x+7|+|x﹣1|≥m恒成立.
(1)求m的取值范圍;
(2)當(dāng)m取最大值時(shí),解關(guān)于x的不等式:|x﹣3|﹣2x≤2m﹣12.

查看答案和解析>>

同步練習(xí)冊(cè)答案