【題目】某客運(yùn)公司用A,B兩種型號(hào)的車(chē)輛承擔(dān)甲、乙兩地間的長(zhǎng)途客運(yùn)業(yè)務(wù),每車(chē)每天往返一次.A,B兩種車(chē)輛的載客量分別為36人和60人,從甲地去乙地的營(yíng)運(yùn)成本分別為1600元/輛和2400元/輛.公司擬組建一個(gè)不超過(guò)21輛車(chē)的客運(yùn)車(chē)隊(duì),并要求B型車(chē)不多于A(yíng)型車(chē)7輛.若每天要以不少于900人運(yùn)完從甲地去乙地的旅客,且使公司從甲地去乙地的營(yíng)運(yùn)成本最小,那么應(yīng)配備A型車(chē)、B型車(chē)各多少輛?

【答案】解:設(shè)應(yīng)配備A型車(chē)、B型車(chē)各x輛,y輛,營(yíng)運(yùn)成本為z元;
則由題意得,
;z=1600x+2400y;
故作平面區(qū)域如下,

故聯(lián)立 解得,x=5,y=12;
此時(shí),z=1600x+2400y有最小值1600×5+2400×12=36800元.
【解析】設(shè)應(yīng)配備A型車(chē)、B型車(chē)各x輛,y輛,營(yíng)運(yùn)成本為z元;從而可得 ;z=1600x+2400y;利用線(xiàn)性規(guī)劃求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本題滿(mǎn)分12分某食品廠(chǎng)為了檢查一條自動(dòng)包裝流水線(xiàn)的生產(chǎn)情況,隨機(jī)抽取該流水線(xiàn)上件產(chǎn)品作為樣本稱(chēng)出它們的重量單位:克,重量的分組區(qū)間為,, ,,由此得到樣本的頻率分布直方圖,如圖所示.

1根據(jù)頻率分布直方圖,求重量超過(guò)克的產(chǎn)品數(shù)量;

2在上述抽取的件產(chǎn)品中任取件,設(shè)為重量超過(guò)克的產(chǎn)品數(shù)量,求的分布列;

3從該流水線(xiàn)上任取件產(chǎn)品,求恰有件產(chǎn)品的重量超過(guò)克的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲、乙兩組數(shù)據(jù)如莖葉圖所示,若它們的中位數(shù)相同,平均數(shù)也相同,

(1)求m,n的取值.
(2)比較甲、乙兩組數(shù)據(jù)的穩(wěn)定性,并說(shuō)明理由.
注:方差公式s2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延長(zhǎng)A1C1至點(diǎn)P,使C1P=A1C1 , 連接AP交棱CC1于點(diǎn)D.以A1為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,如圖所示.

(1)寫(xiě)出A1、B、B1、C、D、P的坐標(biāo);
(2)求異面直線(xiàn)A1B與PB1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}滿(mǎn)足a1+3a2+32a3+…+3n1an= ,n∈N*
(1)求數(shù)列{an}的通項(xiàng);
(2)設(shè) ,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面與圓O所在的平面互相垂直.已知AB=2,EF=1.
(Ⅰ)求證:平面DAF⊥平面CBF;
(Ⅱ)求直線(xiàn)AB與平面CBF所成角的大;
(Ⅲ)當(dāng)AD的長(zhǎng)為何值時(shí),平面DFC與平面FCB所成的銳二面角的大小為60°?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B是單位圓上的兩點(diǎn),A,B兩點(diǎn)分別在第一、二象限,點(diǎn)C是圓與x軸正半軸的交點(diǎn),角∠AOB= ,若點(diǎn)A的坐標(biāo)為( , ),記∠COA=α.

(1)求 的值;
(2)求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}中,a1=﹣2,公差d=3;數(shù)列{bn}中,Sn為其前n項(xiàng)和,滿(mǎn)足:2nSn+1=2n(n∈N+
(Ⅰ)記An= ,求數(shù)列An的前n項(xiàng)和S;
(Ⅱ)求證:數(shù)列{bn}是等比數(shù)列;
(Ⅲ)設(shè)數(shù)列{cn}滿(mǎn)足cn=anbn , Tn為數(shù)列{cn}的前n項(xiàng)積,若數(shù)列{xn}滿(mǎn)足x1=c2﹣c1 , 且xn= ,求數(shù)列{xn}的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程2x2﹣bx+ =0的兩根為sinθ、cosθ,θ∈( , ).
(1)求實(shí)數(shù)b的值;
(2)求 + 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案