1.設全集U={-2,-1,0,1,2},集合M={y|y=2x},N={x|x2-x-2=0},則(∁UM)∩N═( 。
A.{-1}B.{2}C.{-1,2}D.{-1,-2}

分析 化簡集合M、N,根據(jù)補集與交集的定義寫出運算結(jié)果即可.

解答 解:全集U={-2,-1,0,1,2},
集合M={y|y=2x}={y|y>0},
N={x|x2-x-2=0}={x|x=-1或x=2},
則∁UM={x|x≤0},
所以(∁UM)∩N═{-1}.
故選:A.

點評 本題考查了集合的化簡與運算問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.兩條平行直線l1:x+2y+5=0和l2:4x+8y+15=0的距離為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.直線l1:2x-y+1=0與直線l2:x-y-2=0的夾角大小為arctan$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在三角形中,“三條邊長為3,4,5”是“三條邊長為連續(xù)整數(shù)的直角三角形”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.命題“?x∈R,x≤1或x2>4”的否定為“?x∈R,x>1且x2≤4”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若正數(shù)x,y滿足x+2y+4=4xy,且不等式(x+2y)a2+2a+2xy-34≥0恒成立,則實數(shù)a的取值范圍是( 。
A.(-∞,-$\frac{3}{2}$]∪[$\frac{3}{2}$,+∞)B.(-∞,-3]∪[$\frac{3}{2}$,+∞)C.(-∞,-3]∪[$\frac{5}{2}$,+∞)D.(-∞,-$\frac{3}{2}$]∪[$\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知b2+c2=a2+bc.
(1)求角A的大小;
(2)若a=$\sqrt{7}$,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點,點N在線段AD上.
(I)點N為線段AD的中點時,求證:直線PA∥BMN;
(II)若直線MN與平面PBC所成角的正弦值為$\frac{4}{5}$,求平面PBC與平面BMN所成角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),過點(1,$\frac{3}{2}$),且離心率為$\frac{1}{2}$.
(1)求橢圓C的標準方程;
(2)過橢圓C上異于其頂點的任一點P,作⊙O:x2+y2=3的兩條切線,切點分別為M,N,且直線MN在x軸,y軸上截距分別為m,n,證明:$\frac{1}{4{m}^{2}}$+$\frac{1}{3{n}^{2}}$為定值.

查看答案和解析>>

同步練習冊答案