20. (Ⅰ)求數(shù)列{bn}的通項公式,(Ⅱ)求數(shù)列{bn}的前n項和Sn的公式,(Ⅲ)設(shè) Pn=b1+b4+b7+-+b3n-2. Qn=b10+b12+b14+-+b2n+8. 其中n=1.2.-.試比較Pn與Qn的大小.并證明你的結(jié)論.">
17.已知{an}是等比數(shù)列,a1=2,a3=18;{bn}是等差數(shù)列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.

 

(Ⅰ)求數(shù)列{bn}的通項公式;

(Ⅱ)求數(shù)列{bn}的前n項和Sn的公式;

(Ⅲ)設(shè)

   Pn=b1+b4+b7+…+b3n-2,

   Qn=b10+b12+b14+…+b2n+8,

   其中n=1,2,…,試比較Pn與Qn的大小,并證明你的結(jié)論.

17.本小題主要考查等差數(shù)列、等比數(shù)列等基本知識,考查邏輯思維能力,分析問題和解決問題的能力.

解:(Ⅰ)設(shè){an}的公比為q,由a3a1q2

q2=9,q=±3.

當(dāng)q=-3時,a1+a2+a3=2-6+18=14<20,這與a1+a2+a3>20矛盾,故舍去;

當(dāng)q=3時,a1a2+a3=2+6+18=26>20,故符合題意.

設(shè)數(shù)列{bn}的公差為d,由b1+b2+b3+b4=26得

4b1=26,

b1=2,解得d=3,

所以bn=3n-1.

(Ⅱ)Sn=.

(Ⅲ)b1,b4b7,…,b3n-2組成以3d為公差的等差數(shù)列,所以

Pnnb1+·3d=;

b10,b12,b14,…,b2n+8組成以2d為公差的等差數(shù)列,b10=29,

所以Qn=nb10+·2d=3n2+26n,

PnQn=()-(3n2+26n)=nn-19),

所以,對于正整數(shù)n,當(dāng)n≥20時,Pn>Qn;當(dāng)n=19時,PnQn;當(dāng)n≤18時,PnQn .


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•溫州一模)已知q是等比數(shù){an}的公比,則q<1”是“數(shù)列{an}是遞減數(shù)列”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知q是等比數(shù){an}的公比,則q<1”是“數(shù)列{an}是遞減數(shù)列”的


  1. A.
    充分不必要條件
  2. B.
    必要不充分條件
  3. C.
    充要條件
  4. D.
    既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:溫州一模 題型:單選題

已知q是等比數(shù){an}的公比,則q<1”是“數(shù)列{an}是遞減數(shù)列”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省溫州市八校聯(lián)考高三(上)9月月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知q是等比數(shù){an}的公比,則q<1”是“數(shù)列{an}是遞減數(shù)列”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案