【題目】已知橢圓的離心率為,分別為橢圓的左右焦點(diǎn),點(diǎn)為橢圓上的一動點(diǎn),面積的最大值為2.
(1)求橢圓的方程;
(2)直線與橢圓的另一個(gè)交點(diǎn)為,點(diǎn),證明:直線與直線關(guān)于軸對稱.
【答案】(1).(2)證明見解析
【解析】
(1)根據(jù)離心率和面積的最大值為2,即可列出方程,即可求得結(jié)果;
(2)設(shè)出直線的方程,聯(lián)立橢圓方程,根據(jù)韋達(dá)定理,只需求證,則問題得證.
(1)因?yàn)闄E圓的離心率為,
所以,即,又,所以,
因?yàn)?/span>面積的最大值為2,所以,即,
又因?yàn)?/span>,所以,,
故橢圓的方程為
(2)由(1)得,
當(dāng)直線的斜率為時(shí),符合題意,
當(dāng)直線的斜率不為時(shí),
設(shè)直線的方程為,代入消去整理得:
,易得
設(shè),則,
記直線的斜率分別為,則
所以,因此直線與直線關(guān)于軸對稱.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=﹣x+|2x+1|,不等式f(x)<2的解集是M.
(Ⅰ)求集合M;
(Ⅱ)設(shè)a,b∈M,證明:|ab|+1>|a|+|b|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中項(xiàng).?dāng)?shù)列{bn}滿足b1=1,數(shù)列{(bn+1﹣bn)an}的前n項(xiàng)和為2n2+n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橋牌是一種高雅、文明、競技性很強(qiáng)的智力性游戲.近年來,在中國橋牌協(xié)會“橋牌進(jìn)校園”活動的號召下,全國各地中小學(xué)紛紛積極加入到青少年橋牌推廣的大營中.為了了解學(xué)生對橋牌這項(xiàng)運(yùn)動的興趣,某校從高一學(xué)生中隨機(jī)抽取了200名學(xué)生進(jìn)行調(diào)查,經(jīng)統(tǒng)計(jì)男生與女生的人數(shù)之比為2:3,男生中有50人對橋牌有興趣,女生中有20人對橋牌不感興趣.
(1)完成2×2列聯(lián)表,并回答能否有的把握認(rèn)為“該校高一學(xué)生對橋牌是否感興趣與性別有關(guān)”?
感興趣 | 不感興趣 | 合計(jì) | |
男 | 50 | —— | —— |
女 | —— | 20 | —— |
合計(jì) | —— | —— | 200 |
(2)從被調(diào)查的對橋牌有興趣的學(xué)生中利用分層抽樣抽取6名學(xué)生,再從6名學(xué)生中抽取2名學(xué)生作為橋牌搭檔參加雙人賽.求抽到一名男生與一名女生的概率.
附:參考公式,其中.
臨界值表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,分別為橢圓的左右焦點(diǎn),點(diǎn)為橢圓上的一動點(diǎn),面積的最大值為2.
(1)求橢圓的方程;
(2)直線與橢圓的另一個(gè)交點(diǎn)為,點(diǎn),證明:直線與直線關(guān)于軸對稱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為支援武漢的防疫,某醫(yī)院職工踴躍報(bào)名,其中報(bào)名的醫(yī)生18人,護(hù)士12人,醫(yī)技6人,根據(jù)需要,從中抽取一個(gè)容量為n的樣本參加救援隊(duì),若采用系統(tǒng)抽樣和分層抽樣,均不用剔除人員.當(dāng)抽取n+1人時(shí),若采用系統(tǒng)抽樣,則需剔除1個(gè)報(bào)名人員,則抽取的救援人員為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓:過點(diǎn),橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,設(shè)直線與圓相切與點(diǎn),與橢圓相切于點(diǎn),當(dāng)為何值時(shí),線段長度最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】任取一個(gè)自然數(shù),如果它是偶數(shù),我們就把它除以2,如果它是奇數(shù),我們就把它乘3再加上1,在這樣的變換下,我們就得到一個(gè)新的自然數(shù).如果反復(fù)使用這個(gè)變換,我們就會得到一串自然數(shù),最終我們都會陷在4→2→1這個(gè)循環(huán)中,這就是世界數(shù)學(xué)名題“3x+1問題”.如圖所示的程序框圖的算法思路源于此,執(zhí)行該程序框圖,若N=6,則輸出的i=( )
A.6B.7C.8D.9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com