【題目】已知拋物線 和 所圍成的封閉曲線,給定點A(0,a),若在此封閉曲線上恰有三對不同的點,滿足每一對點關于點A對稱,則實數(shù)a的取值范圍是 .
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+4x+a﹣5,g(x)=m4x﹣1﹣2m+7.
(1)若函數(shù)f(x)在區(qū)間[﹣1,1]上存在零點,求實數(shù)a的取值范圍;
(2)當a=0時,若對任意的x1∈[1,2],總存在x2∈[1,2],使f(x1)=g(x2)成立,求實數(shù)m的取值范圍;
(3)若y=f(x)(x∈[t,2])的置于為區(qū)間D,是否存在常數(shù)t,使區(qū)間D的長度為6﹣4t?若存在,求出t的值;若不存在,請說明理由. (注:區(qū)間[p,q]的長度q﹣p)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的中心在原點,焦點在x軸上,離心率等于 ,它的一個短軸端點是(0,2 ).
(1)求橢圓C的方程;
(2)P(2,3)、Q(2,﹣3)是橢圓上兩點,A、B是橢圓位于直線PQ兩側的兩動點,
①若直線AB的斜率為 ,求四邊形APBQ面積的最大值;
②當A、B運動時,滿足∠APQ=∠BPQ,試問直線AB的斜率是否為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓的中心在原點O,短軸長為 ,左焦點為F(﹣c,0)(c>0),直線 與x軸交于點A,且 ,過點A的直線與橢圓相交于P,Q兩點.
(1)求橢圓的方程.
(2)若 ,求直線PQ的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+)( )的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式.
(2)函數(shù)y=f(x)的圖象可以由y=sinx的圖象變換后得到,請寫出一種變換過程的步驟(注明每個步驟后得到新的函數(shù)解析式).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x),x∈R,對于任意的x,y∈R,f(x+y)=f(x)+f(y),若f(1)= ,則f(﹣2016)= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=2sin(2x+ ),g(x)=mcos(2x﹣ )﹣2m+3(m>0),若對任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,則實數(shù)m的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)調(diào)查分析,若干年內(nèi)某產(chǎn)品關稅與市場供應量P的關系近似地滿足:y=P(x)=2 ,(其中,t為關稅的稅率,且t∈[0, ),x為市場價格,b,k為正常數(shù)),當t= 時的市場供應量曲線如圖.
(Ⅰ)根據(jù)圖象求b,k的值;
(Ⅱ)若市場需求量為Q(x)=2 ,當p=Q時的市場價格稱為市場平衡價格,當市場平衡價格保持在10元時,求稅率t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com