【題目】已知橢圓C: +y2=1與直線l:y=kx+m相交于E、F兩不同點(diǎn),且直線l與圓O:x2+y2= 相切于點(diǎn)W(O為坐標(biāo)原點(diǎn)).
(1)證明:OE⊥OF;
(2)設(shè)λ= ,求實(shí)數(shù)λ的取值范圍.
【答案】
(1)解:∵直線l與圓O相切,
∴圓x2+y2= 的圓心到直線l的距離d= = ,
∴ ;
由 ,得:
(1+2k2)x2+4kmx+2m2﹣2=0;
設(shè)E(x1,y1),F(xiàn)(x2,y2),
則 , ;
∴
∴OE⊥OF;
(2)解:∵直線l與圓O相切于W, ,
∴ ;
由(1)知x1x2+y1y2=0,
∴x1x2=﹣y1y2,即 ;
從而 ,
即 ,
∴ ;
∵﹣ ≤x1≤ ,
∴λ∈[ ,2].
【解析】(1)由直線l與圓O相切,得圓心到直線l的距離d=r,再由直線l與橢圓C相交,得出E、F點(diǎn)的坐標(biāo)關(guān)系,從而證明OE⊥OF;(2)根據(jù)直線l與圓O相切于點(diǎn)W,以及OE⊥OF,得出λ= 的坐標(biāo)表示,求出λ的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(1)證明:AB⊥A1C;
(2)若AB=CB=2,A1C= ,求二面角B﹣AC﹣A1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+c與x軸交于A、B兩點(diǎn),頂點(diǎn)為C,點(diǎn)P在拋物線上,且位于x軸下方.
(1)如下圖,若P(1,-3)、B(4,0),① 求該拋物線的解析式;② 若D是拋物線上一點(diǎn),滿足∠DPO=∠POB,求點(diǎn)D的坐標(biāo);
(2) 如下圖,在圖中的拋物線解析式不變的條件下,已知直線PA、PB與y軸分別交于E、F兩點(diǎn).當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),OE+OF是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,離心率為.過定點(diǎn)的直線交橢圓于不同的兩點(diǎn), (點(diǎn)在點(diǎn), 之間).
(Ⅰ)求橢圓的方程;
(Ⅱ)若,求實(shí)數(shù)的取值范圍;
(Ⅲ)若射線交橢圓于點(diǎn)(為原點(diǎn)),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,AD=PD=2,PA=2 ,∠PDC=120°,點(diǎn)E為線段PC的中點(diǎn),點(diǎn)F在線段AB上.
(1)若AF= ,求證:CD⊥EF;
(2)設(shè)平面DEF與平面DPA所成二面角的平面角為θ,試確定點(diǎn)F的位置,使得cosθ= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 是函數(shù)的導(dǎo)函數(shù),則的圖象大致是( )
A. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/8f50d3dfba9b485fac00e42a95909498.png] B. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/74ae44978a70424c961e850ed79072da.png]
C. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/2f113f7ec5294ba0bbd1f66b13f3e152.png] D. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/dbaa9025ccdb497380b769e5396c4c19.png]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自平面上一點(diǎn)O引兩條射線OA,OB,P在OA上運(yùn)動(dòng),Q在OB上運(yùn)動(dòng)且保持| |為定值2 (P,Q不與O重合).已知∠AOB=120°,
(I)PQ的中點(diǎn)M的軌跡是的一部分(不需寫具體方程);
(II)N是線段PQ上任﹣點(diǎn),若|OM|=1,則 的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2019·朝鮮中學(xué)]在如圖所示的程序框圖中,有這樣一個(gè)執(zhí)行框,其中的函數(shù)關(guān)系式為,程序框圖中的為函數(shù)的定義域.
(1)若輸入,請寫出輸出的所有的值;
(2)若輸出的所有都相等,試求輸入的初始值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為, ,且經(jīng)過點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)的頂點(diǎn)都在橢圓上,其中關(guān)于原點(diǎn)對稱,試問能否為正三角形?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com