定義在R上的奇函數(shù)有最小正周期4,且時(shí),。
(1)求上的解析式;
(2)判斷上的單調(diào)性,并給予證明;
(3)當(dāng)為何值時(shí),關(guān)于方程上有實(shí)數(shù)解?

(1)(2)在(0,2)上單調(diào)遞減;(3)

解析試題分析:(1)當(dāng)時(shí),,利用時(shí),,可得,當(dāng)時(shí),由,可得,又的最小正周期4,可得,由此可求在[-2,2]上的解析式;(2)直接利用函數(shù)單調(diào)性的定義去求;(3)利用在(0,2)上單調(diào)遞減和為奇函數(shù),分別求出、上的范圍,從而得出的取值范圍.
試題解析:(1) 
                     1分
當(dāng)時(shí),,故      3分
                    4分
(2)任取
        6分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9c/3/bndlf4.png" style="vertical-align:middle;" />故,,>0
  故在(0,2)上單調(diào)遞減。           8分
(3)由(2)知:時(shí), 
為奇函數(shù),時(shí),
時(shí),
綜上:                 12分
考點(diǎn):函數(shù)奇偶性的性質(zhì);函數(shù)解析式的求解及常用方法;函數(shù)的周期性,函數(shù)的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

把長(zhǎng)為10cm的細(xì)鐵絲截成兩段,各自圍成一個(gè)正方形,求這兩個(gè)正方形面積之和的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某跳水運(yùn)動(dòng)員在一次跳水訓(xùn)練時(shí)的跳水曲線為如圖所示的拋物線一段,已知跳水板長(zhǎng)為2m,跳水板距水面的高為3m,=5m,=6m,為安全和空中姿態(tài)優(yōu)美,訓(xùn)練時(shí)跳水曲線應(yīng)在離起跳點(diǎn)m()時(shí)達(dá)到距水面最大高度4m,規(guī)定:以為橫軸,為縱軸建立直角坐標(biāo)系.

(1)當(dāng)=1時(shí),求跳水曲線所在的拋物線方程;
(2)若跳水運(yùn)動(dòng)員在區(qū)域內(nèi)入水時(shí)才能達(dá)到壓水花的訓(xùn)練要求,求達(dá)到壓水花的訓(xùn)練要求時(shí)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為函數(shù)圖象上一點(diǎn),為坐標(biāo)原點(diǎn),記直線的斜率
(1)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(2)當(dāng) 時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場(chǎng)在店慶一周年開展“購(gòu)物折上折活動(dòng)”:商場(chǎng)內(nèi)所有商品按標(biāo)價(jià)的八折出售,折后價(jià)格每滿500元再減100元.如某商品標(biāo)價(jià)為1500元,則購(gòu)買該商品的實(shí)際付款額為1500×0.8-200=1000(元).設(shè)購(gòu)買某商品得到的實(shí)際折扣率.設(shè)某商品標(biāo)價(jià)為元,購(gòu)買該商品得到的實(shí)際折扣率為
(Ⅰ)寫出當(dāng)時(shí),關(guān)于的函數(shù)解析式,并求出購(gòu)買標(biāo)價(jià)為1000元商品得到的實(shí)際折扣率;
(Ⅱ)對(duì)于標(biāo)價(jià)在[2500,3500]的商品,顧客購(gòu)買標(biāo)價(jià)為多少元的商品,可得到的實(shí)際折扣率低于?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若在定義域上為增函數(shù),求實(shí)數(shù)的取值范圍;
(2)求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),
⑴ 求不等式的解集;
⑵ 如果關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分)已知函數(shù),其中a是實(shí)數(shù),設(shè)A(x1,f(x1)),B(x2,f(x2))為該函數(shù)圖象上的點(diǎn),且x1<x2
(I)指出函數(shù)f(x)的單調(diào)區(qū)間;
(II)若函數(shù)f(x)的圖象在點(diǎn)A,B處的切線互相垂直,且x2<0,求x2﹣x1的最小值;
(III)若函數(shù)f(x)的圖象在點(diǎn)A,B處的切線重合,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車速度為0;當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米,/小時(shí),研究表明:當(dāng)時(shí),車流速度v是車流密度的一次函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí)) 可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí))

查看答案和解析>>

同步練習(xí)冊(cè)答案