把長為10cm的細鐵絲截成兩段,各自圍成一個正方形,求這兩個正方形面積之和的最小值。

解析試題分析:設(shè)出其中一段的長為,表示出另一段的長,從而得正方形面積表示式為二次函數(shù)即可求解,
但要注意自變量得取值范圍,即函數(shù)定義域。
試題解析:設(shè)鐵絲一段長 ,,兩正方形面積之和為,      3分
則另一段鐵絲長,       5分
依題意,,      10分
時,取最大值.      13分
答:(略)      14分
考點:二次函數(shù)最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

求值:
(1)
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

“城中觀!笔墙陙韲鴥(nèi)很多大中型城市內(nèi)澇所致的現(xiàn)象,究其原因,除天氣因素、城市規(guī)劃等原因外,城市垃圾雜物也是造成內(nèi)澇的一個重要原因。暴雨會沖刷城市的垃圾雜物一起進入下水道,據(jù)統(tǒng)計,在不考慮其它因素的條件下,某段下水道的排水量V(單位:立方米/小時)是雜物垃圾密度x(單位:千克/立方米)的函數(shù)。當下水道的垃圾雜物密度達到2千克/立方米時,會造成堵塞,此時排水量為0;當垃圾雜物密度不超過0.2千克/立方米時,排水量是90立方米/小時;研究表明,時,排水量V是垃圾雜物密度x的一次函數(shù)。
(Ⅰ)當時,求函數(shù)V(x)的表達式;
(Ⅱ)當垃圾雜物密度x為多大時,垃圾雜物量(單位時間內(nèi)通過某段下水道的垃圾雜物量,單位:千克/小時)可以達到最大,求出這個最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的值域為集合,的定義域為集合,其中。(1)當,求;(2)設(shè)全集為R,若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知一企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為10萬元,每生產(chǎn)千件需另投入2.7萬元,設(shè)該企業(yè)年內(nèi)共生產(chǎn)此種產(chǎn)品千件,并且全部銷售完,每千件的銷售收入為萬元,且
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)品(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤最大?
(注:年利潤=年銷售收入-年總成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)增函數(shù)
(1)求函數(shù)的解析式;
(2)設(shè)函數(shù),其中.若函數(shù)僅在處有極值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠有名工人,現(xiàn)接受了生產(chǎn)型高科技產(chǎn)品的總?cè)蝿?wù).已知每臺型產(chǎn)品由型裝置和型裝置配套組成,每個工人每小時能加工型裝置或型裝置.現(xiàn)將工人分成兩組同時開始加工,每組分別加工一種裝置(完成自己的任務(wù)后不再支援另一組).設(shè)加工型裝置的工人有人,他們加工完型裝置所需時間為,其余工人加工完型裝置所需時間為(單位:小時,可不為整數(shù)).
(1)寫出的解析式;
(2)寫出這名工人完成總?cè)蝿?wù)的時間的解析式;
(3)應(yīng)怎樣分組,才能使完成總?cè)蝿?wù)用的時間最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)滿足對任意實數(shù)都有成立,且當時,,.
(1)求的值;
(2)判斷上的單調(diào)性,并證明;
(3)若對于任意給定的正實數(shù),總能找到一個正實數(shù),使得當時,,則稱函數(shù)處連續(xù)。試證明:處連續(xù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義在R上的奇函數(shù)有最小正周期4,且時,。
(1)求上的解析式;
(2)判斷上的單調(diào)性,并給予證明;
(3)當為何值時,關(guān)于方程上有實數(shù)解?

查看答案和解析>>

同步練習(xí)冊答案