【題目】已知函數(shù)).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)設(shè)若函數(shù)上為減函數(shù),求實(shí)數(shù)的最小值;

(3)若存在,使得成立求實(shí)數(shù)的取值范圍

【答案】(1)遞增,遞減(2)(3)

【解析】

試題分析:(1)先求函數(shù)導(dǎo)數(shù),確定導(dǎo)函數(shù)零點(diǎn)1,列表分析導(dǎo)函數(shù)符號(hào)變化規(guī)律,確定函數(shù)單調(diào)區(qū)間(2)由題意得恒成立,即利用變量分離轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值:的最大值,而可視作一個(gè)二次函數(shù),根據(jù)對(duì)稱(chēng)軸與定義區(qū)間位置關(guān)系得最值(3)不等式存在性問(wèn)題,一般利用變量分離轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問(wèn)題:,設(shè),則,所以,也可分類(lèi)討論

試題解析:(1)時(shí),,

,解得,解得,

遞增,遞減

(2)由已知得,函數(shù)的定義域?yàn)?/span>

函數(shù)上為減函數(shù),恒成立

恒成立

,得到恒成立,得,的最小值為

(3)若存在使得成立,

問(wèn)題等價(jià)于:存在,使得成立,

問(wèn)題等價(jià)于:當(dāng)時(shí),,且,

,結(jié)合(2)知:當(dāng)時(shí),

當(dāng)時(shí),上恒成立,上單調(diào)遞減

,得到成立

當(dāng)時(shí),不滿(mǎn)足題意,綜上

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明對(duì)本班同學(xué)做調(diào)查,提出問(wèn)題你考試作弊嗎?這樣的問(wèn)法______(填合理不合理),理由是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

討論單調(diào)性;

當(dāng)時(shí),,已知三個(gè)極值點(diǎn),求取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某屆奧運(yùn)會(huì)上,中國(guó)隊(duì)以26金18銀26銅的成績(jī)稱(chēng)金牌榜第三、獎(jiǎng)牌榜第二,某校體育愛(ài)好者在高三 年級(jí)一班至六班進(jìn)行了“本屆奧運(yùn)會(huì)中國(guó)隊(duì)表現(xiàn)”的滿(mǎn)意度調(diào)查(結(jié)果只有“滿(mǎn)意”和“不滿(mǎn)意”兩種),從被調(diào)查的學(xué)生中隨機(jī)抽取了50人,具體的調(diào)查結(jié)果如下表:

(1)在高三年級(jí)全體學(xué)生中隨機(jī)抽取一名學(xué)生,由以上統(tǒng)計(jì)數(shù)據(jù)估計(jì)該生持滿(mǎn)意態(tài)度的概率;

(2)若從一班至二班的調(diào)查對(duì)象中隨機(jī)選取4人進(jìn)行追蹤調(diào)查,記選中的4人中對(duì)“本屆奧運(yùn)會(huì)中國(guó)隊(duì)表現(xiàn)”不滿(mǎn)意的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)校開(kāi)展的綜合實(shí)踐活動(dòng)中,某班進(jìn)行了小制作評(píng)比,作品上交時(shí)間為5月1日至30日,評(píng)委會(huì)把同學(xué)們上交作品的件數(shù)按照5天一組分組統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示).已知從左到右各長(zhǎng)方形的高的比為2:3:4:6:4:1,第三組的頻數(shù)為12,請(qǐng)解答下列各題.

(1)本次活動(dòng)共有多少件作品參加評(píng)比?

(2)哪組上交的作品數(shù)量最多?有多少件?

(3)經(jīng)過(guò)評(píng)比,第四組和第六組分別有10件2件作品獲獎(jiǎng),問(wèn)這兩組哪一組獲獎(jiǎng)率較高?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某企業(yè)的兩座建筑物AB,CD的高度分別為20m和40m,其底部BD之間距離為20m.為響應(yīng)創(chuàng)建文明城市號(hào)召,進(jìn)行亮化改造,現(xiàn)欲在建筑物AB的頂部A處安裝一投影設(shè)備,投影到建筑物CD上形成投影幕墻,既達(dá)到亮化目的又可以進(jìn)行廣告宣傳.已知投影設(shè)備的投影張角∠EAF,投影幕墻的高度EF越小,投影的圖像越清晰.設(shè)投影光線的上邊沿AE與水平線AG所成角為α,幕墻的高度EFy(m).

(1)求y關(guān)于α的函數(shù)關(guān)系式,并求出定義域;

(2)當(dāng)投影的圖像最清晰時(shí),求幕墻EF的高度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量a=(cosx,sinx),b=(-cosx,cosx),c=(-1,0).

1x,求向量a,c的夾角;

2當(dāng)x時(shí),求函數(shù)f(x)2a·b1的值域

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,直線 和圓

(Ⅰ)求直線斜率的取值范圍;

(Ⅱ)直線能否將圓分割成弧長(zhǎng)的比值為的兩段圓。繛槭裁?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程式是參數(shù).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且取相同的長(zhǎng)度單位建立極坐標(biāo)系,圓的極坐標(biāo)方程為

1求直線的普通方程與圓的直角坐標(biāo)方程;

2設(shè)圓與直線交于、兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案