14.函數(shù)y=x2-x-1在[-1,1]上的最大值為1.

分析 先求出對稱軸,分析取得最值的位置,計算進而即可獲得問題的解答.

解答 解:函數(shù)y=x2-x-1的對稱軸為x=$\frac{1}{2}$,
故函數(shù)在[-1,$\frac{1}{2}$]上為減函數(shù),函數(shù)在[$\frac{1}{2}$,1]上為增函數(shù).
所以,函數(shù)在x=-1時取得最大值.
∴最大值為(-1)2-(-1)-1=1.
故答案為:1.

點評 本題考查的是函數(shù)在閉區(qū)間上求最值問題.在解答的過程當中充分體現(xiàn)了二次函數(shù)的性質(zhì)、值得同學們體會和反思.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,且經(jīng)過點(1,$\frac{3}{2}$)
(1)求橢圓C的方程;
(2)已知A為橢圓C的左頂點,直線l過右焦點F與橢圓C交于M,N兩點,若AM、AN的斜率k1,k2滿足k1+k2=6,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知實數(shù)列-1,a,b,c,-2成等比數(shù)列,則abc等于(  )
A.4B.±4C.2$\sqrt{2}$D.-2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設焦點在x軸上的橢圓$\frac{x^2}{4}+\frac{y^2}{k}=1$的離心率為e,且$e∈(\frac{1}{2},1)$,則實數(shù)k的取值范圍是( 。
A.(0,3)B.$(3,\frac{16}{3})$C.$(0,3)∪(3,\frac{16}{3})$D.(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)y=ln(4-x2)+$\sqrt{1-tanx}$的定義域為(-$\frac{π}{2}$,$\frac{π}{4}$]∪($\frac{π}{2}$,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.某學校有學生4 022人.為調(diào)查學生對2012年倫敦奧運會的了解狀況,現(xiàn)用系統(tǒng)抽樣的方法抽取一個容量為30的樣本,則分段間隔是134.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.等比數(shù)列{an}中,公比q=2,a1+a4+a7…+a97=11,則數(shù)列{an}的前99項的和S99=77.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知復數(shù)z滿足$\frac{z}{z+3i}$=1+4i,則復數(shù)z的虛部為( 。
A.-3B.11C.11iD.-11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在△ABC中,B($\sqrt{3}$,0)、C(-$\sqrt{3}$,0),動點A滿足sinB+sinC=$\frac{2\sqrt{3}}{3}$sinA.
(1)求動點A的軌跡D的方程;
(2)若點P($\frac{1}{2}$,$\frac{1}{4}$),經(jīng)過點P作一條直線l與軌跡D相交于點M,N,并且P為線段MN的中點,求直線l的方程.

查看答案和解析>>

同步練習冊答案