已知圓C的方程為x2+y2-4x=0,直線l與x,y軸的交點(diǎn)坐標(biāo)分別為(
1
3
,0)和(0,-
1
4
),則直線l截圓C所得的弦長(zhǎng)為
 
考點(diǎn):直線與圓的位置關(guān)系
專題:直線與圓
分析:利用截距式求得直線l的方程,求出圓心(2,0)到直線l的距離d和圓的半徑r,再由弦長(zhǎng)公式求得直線l截圓C所得的弦長(zhǎng).
解答: 解:由直線l與x,y軸的交點(diǎn)坐標(biāo)分別為(
1
3
,0)和(0,-
1
4
),
可得直線l的方程為
x
1
3
+
y
-
1
4
=1,即 3x-4y-1=0.
圓心(2,0)到直線l的距離d=
|6-0-1|
9+16
=1,圓C:x2+y2-4x=0的半徑等于2,
故直線l截圓C所得的弦長(zhǎng)為 2
r2-d2
=2
4-1
=2
3
,
故答案為 2
3
點(diǎn)評(píng):本題主要考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式,弦長(zhǎng)公式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3cos
πx
2
-log
1
2
x
零點(diǎn)個(gè)數(shù)是(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

極坐標(biāo)方程p=cosθ化為直角坐標(biāo)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2eax
(Ⅰ)當(dāng)a=1時(shí),求f(x)在(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若f(x)在(1,+∞)單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知點(diǎn)F(0,
1
4
),直線l:y=-
1
4
,P為平面內(nèi)動(dòng)點(diǎn),過點(diǎn)P作直線l的垂線,垂足為M,且
MP
MF
=
FP
FM

(Ⅰ)求動(dòng)點(diǎn)P的軌跡E的方程;
(Ⅱ)若曲線E與圓Q:x2+(y-4)2=r2(r>0)有A、B、C、D四個(gè)交點(diǎn),求四邊形ABCD面積取到最大值時(shí)圓Q的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2sin(
π
3
x+
π
6
),集合M={x||f(x)|=2,x>0},把M中的元素從小到大依次排成一列,得到數(shù)列{an}(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足:b 1=1,bn+1=bn+a2n,求{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,AB=2
2
,CC1=4,M是棱CC1上一點(diǎn).
(Ⅰ)求證:BC⊥AM;
(Ⅱ)若M,N分別為CC1,AB的中點(diǎn),求證:CN∥平面AB1M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記關(guān)于x的不等式
x-a
x-1
<0的解集為P,不等式|x-1|<1的解集為Q.
(1)若a=3,求P;
(2)若a=-1,求P∪Q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-1,cosωx+
3
sinωx),
b
=(f(x),cosωx),其中ω>0,且
a
b
,又f(x)的圖象兩相鄰對(duì)稱軸的距離為
3
2
π

(1)求ω的值;
(2)求函數(shù)f(x)在[0,2π]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案