數(shù)列{an}定義如下:a1=1,對于每個(gè)n∈N*,a4n-3,a4n-2,a4n-1構(gòu)成公差為1的等差數(shù)列,而a4n-1,a4n,a4n+1構(gòu)成公比為2的等比數(shù)列.
(1)求a2,a6的值以及a4n-2(n∈N*)的通項(xiàng)公式;
(2)若bn=(a1+a2+a3)+(a5+a6+a7)+…+(a4n-3+a4n-2+a4n-1),在數(shù)列{bn}中是否存在不同的三項(xiàng),使得此三項(xiàng)能成為某三角形的三條邊長?若能,求出這三項(xiàng);若不能,請說明理由.
考點(diǎn):數(shù)列與不等式的綜合
專題:綜合題,點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(1)利用4n-3,a4n-2,a4n-1構(gòu)成公差為1的等差數(shù)列,而a4n-1,a4n,a4n+1構(gòu)成公比為2的等比數(shù)列,求a2,a6的值以及a4n-2(n∈N*)的通項(xiàng)公式;
(2)由(1)知bn=
11
3
(4n-1)
-5n,確定數(shù)列{bn}單調(diào)遞減,再利用反證法,即可得出結(jié)論.
解答: 解:(1)a2=2,a3=3,a4=6,a5=12,a6=13.
由題意,a4n-1=a4n-2+1,a4n+1=4a4n-1,a4n+2=a4n+1+1,
∴a4n+2=4a4n-2+5,
∴a4n+2+
5
3
=4(a4n-2+
5
3

∴{a4n-2+
5
3
}是以
11
3
為首項(xiàng),4為公比的等比數(shù)列,
∴a4n-2+
5
3
=
11
3
4n-1
,
∴a4n-2=
11
3
4n-1
-
5
3
;
(2)由(1)知,a4n-3+a4n-2+a4n-1=3a4n-2=11•4n-1-5,
∴bn=
11
3
(4n-1)
-5n,
∴bn+1-bn=
11
3
(4n+1-1)
-5(n+1)-
11
3
(4n-1)
+5n=11×4n-5>0,
∴數(shù)列{bn}單調(diào)遞減
假設(shè)存在不同的三項(xiàng)bs,bt,bk(s<t<k),使得此三項(xiàng)能成為某三角形的三條邊長,則k≥3,t≤k-1,s≤k-2,
且bk≤bs+bt≤bk-2+bk-1,可得33•4k-2+15k≤34
∵k≥3,∴33•4k-2+15k≥177,
∴數(shù)列{bn}中不存在不同的三項(xiàng),使得此三項(xiàng)能成為某三角形的三條邊長.
點(diǎn)評:本題考查數(shù)列中的新定義,考查數(shù)列的單調(diào)性,考查學(xué)生分析解決問題的能力,有難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

隨機(jī)抽取某中學(xué)高一級學(xué)生的一次數(shù)學(xué)測試成績得到一樣本,其分組區(qū)間和頻數(shù)是:[50,60),2;[60,70);7;[70,80),10;[80,90),x;[90,100],2.其頻率分布直方圖受到破壞,可見部分如圖所示,據(jù)此解答如下問題:
(1)求樣本的人數(shù)及x的值;
(2)估計(jì)樣本的眾數(shù),并計(jì)算頻率分布直方圖中[80,90)的矩形的高
(3)從成績不低于80分的樣本中隨機(jī)選取2人,該2人中成績在90分以上(含90分)的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

公車私用、超編配車等現(xiàn)象一直飽受詬病,省機(jī)關(guān)事務(wù)管理局認(rèn)真貫徹落實(shí)黨中央、國務(wù)院有關(guān)公務(wù)用車配備使用管理辦法,積極推進(jìn)公務(wù)用車制度改革.某機(jī)關(guān)單位有車牌尾號為2的汽車A和尾號為6的汽車B,兩車分屬于兩個(gè)獨(dú)立業(yè)務(wù)部門.為配合用車制度對一段時(shí)間內(nèi)兩輛汽車的用車記錄進(jìn)行統(tǒng)計(jì),在非限行日,A車日出車頻率0.6,B車日出車頻率0.5,該地區(qū)汽車限行規(guī)定如下:
車尾號0和51和62和73和84和9
限行日星期一星期二星期三星期四星期五
現(xiàn)將汽車日出車頻率理解為日出車概率,且A,B兩車出車情況相互獨(dú)立.
(1)求該單位在星期一恰好出車一臺的概率;
(2)設(shè)X表示該單位在星期一與星期二兩天的出車臺數(shù)之和,求X的分布列及其數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合Z劃分為兩兩不相交的子集A1,A2,…,An,又劃分為兩兩不相交的子集B1,B2,…,Bn.已知任意兩個(gè)不相交子集Ai與Bj的并集Ai∪Bj至少含有n個(gè)元素,1≤i,j≤n.求證:集合Z中的元素個(gè)數(shù)至少為
n2
2
,它能否等于
n2
2
?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是公差不為0的等差數(shù)列,前n項(xiàng)和為Sn,S5=20,a1,a3,a7成等比數(shù)列,數(shù)列{
1
anan+1
}的前n項(xiàng)和為Tn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若Tn≤λan+1對一切n∈N*恒成立,求實(shí)數(shù)λ的最小值;
(3)設(shè)cn=(1-
Tn
Tn+1
)•
1
Tn+1
,求證:c1+c2+c3+…+cn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2=1,直線l:y-kx-1=0
(1)k=1時(shí)判斷圓C和直線的位置關(guān)系.
(2)若圓C上有且僅有三個(gè)點(diǎn)到l的距離為
1
2
,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx-
π
6
)+1(A>0,ω>0)的周期是π,最大值為3.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)求函數(shù)f(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:y-
1
2
x+1=0
(1)求直線l1的斜率.
(2)若直線l2垂直于l1并經(jīng)過點(diǎn)M(1,2)求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,一個(gè)質(zhì)點(diǎn)從A(a1,a2)出發(fā)沿圖中路線依次經(jīng)過A(a1,a2),B(a3,a4),C(a5,a6),D(a7,a8),…,按此規(guī)律一直運(yùn)動下去,則a2014+a2015+a2016=
 

查看答案和解析>>

同步練習(xí)冊答案