【題目】若關(guān)于x的方程 sinx+cosx=k在區(qū)間[0, ]上有兩個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)k的取值范圍為 .
【答案】[ ,2)
【解析】解:∵方程 sinx+cosx=k,
∴2sin(x+ )=k,即sinx(x+ )= ,
可以令f(x)=sinx(x+ ),h(x)= ,
∵方程 sinx+cosx=k在區(qū)間[0, ]上有兩個(gè)不同的實(shí)數(shù)解
∴函數(shù)f(x)和h(x)的圖象有兩個(gè)交點(diǎn),
如下圖:
∴ ≤x+ ≤
∴h(x)= ,要使y=f(x)與y=h(x)有兩個(gè)交點(diǎn),
∴y=h(x)在直線m和直線n之間,有兩個(gè)交點(diǎn),
∴ ≤ <1,
∴ k<2.
所以答案是:[ ,2).
【考點(diǎn)精析】認(rèn)真審題,首先需要了解兩角和與差的正弦公式(兩角和與差的正弦公式:).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某課程考核分理論與實(shí)驗(yàn)兩部分進(jìn)行,每部分考核成績(jī)只記“合格”與“不合格”,兩部分考核都是“合格”,則該課程考核“合格”,若甲、乙、丙三人在理論考核中合格的概率分別為0.9,0.8,0.7,在實(shí)驗(yàn)考核中合格的概率分別為0.8,0.7,0.9,所有考核是否合格相互之間沒有影響.
(1)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;
(2)求這三個(gè)人該課程考核都合格的概率(結(jié)果保留三位小數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(2,0)和單位圓上的兩點(diǎn)B(1,0),C(-,),點(diǎn)P是劣弧上一點(diǎn),∠BOC=α,∠BOP=β.
(Ⅰ)若OC⊥OP,求sin(π-α)+sin(-β)的值;
(Ⅱ)設(shè)f(t)=|+t|(t∈R),當(dāng)f(t)的最小值為1時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.
(1)若的面積,求a+c值;
(2)若2cosC(+)=c2,求角C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】不超過實(shí)數(shù)x的最大整數(shù)稱為x整數(shù)部分,記作[x].已知f(x)=cos([x]-x),給出下列結(jié)論:
①f(x)是偶函數(shù);
②f(x)是周期函數(shù),且最小正周期為π;
③f(x)的單調(diào)遞減區(qū)間為[k,k+1)(k∈Z);
④f(x)的值域?yàn)椋╟os1,1].
其中正確命題的序號(hào)是______(填上所以正確答案的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時(shí),函數(shù)f(x)有極值-.
(1)求函數(shù)的解析式;
(2)若關(guān)于x的方程f(x)=k有三個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn),離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓的右頂點(diǎn),直線與直線分別與軸交于兩點(diǎn),試問在軸上是否存在一個(gè)定點(diǎn)使得?若是,求出定點(diǎn)的坐標(biāo);若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家商場(chǎng)對(duì)同一種商品開展促銷活動(dòng),對(duì)購(gòu)買該商品的顧客兩家商場(chǎng)的獎(jiǎng)勵(lì)方案如下:
甲商場(chǎng):顧客轉(zhuǎn)動(dòng)如圖所示的圓盤,當(dāng)指針指向陰影部分(圖中兩個(gè)陰影部分均為扇形,且每個(gè)扇形的圓心角均為,邊界忽略不計(jì))即為中獎(jiǎng).
乙商場(chǎng):從裝有2個(gè)白球、2個(gè)藍(lán)球和2個(gè)紅球(這些球除顏色外完全相同)的盒子中一次性摸出2球,若摸到的是2個(gè)相同顏色的球,則為中獎(jiǎng).
試問:購(gòu)買該商品的顧客在哪家商場(chǎng)中獎(jiǎng)的可能性大?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分圖象如圖所示,當(dāng)x=時(shí),y最大值1,當(dāng)x=時(shí),取得最小值-1
(1)求y=f(x)的解析式;
(2)寫出此函數(shù)取得最大值時(shí)自變量x的集合和它的單調(diào)遞增區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com