【題目】如圖,在平面直角坐標系中,已知點A(2,0)和單位圓上的兩點B(1,0),C(-),點P是劣弧上一點,BOC=α,∠BOP=β

(Ⅰ)OCOP,求sin(π-α)+sin(-β)的值;

(Ⅱ)設(shè)ft=|+t|(tR),當ft的最小值為1時,求的值.

【答案】(Ⅰ);(Ⅱ)

【解析】

由已知可得,,P(cosβ,sinβ).

(Ⅰ),得sinβ=sin()=-cos.然后利用三角函數(shù)的誘導公式化簡求值即可;

(Ⅱ)由|+t|=(2+tcosβ,tsinβ),得ft=,進一步得到ftmin=,求出β的值,得到P點坐標,再由平面向量數(shù)量積的坐標運算求的值

由已知可得,,P(cosβ,sinβ).

(Ⅰ)

∴sinβ=sin()=-cos

∴sin(π-α)+sin(-β)=sinα-sinβ=;

(Ⅱ)∵|+t|=(2+tcosβ,tsinβ),

ft==

ftmin=

∵0<βα,

,即P,).

=

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知n為正整數(shù),試比較n22n的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:,直線過定點.

(1)若與圓相切,求的方程;

(2)若與圓相交于兩點,線段的中點為,又的交點為,判斷是否為定值.若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: =1(a>b>0)的兩個焦點與短軸的一個端點是直角三角形的3個頂點,直線l:y=﹣x+3與橢圓E有且只有一個公共點T.
(1)求橢圓E的方程及點T的坐標;
(2)設(shè)O是坐標原點,直線l′平行于OT,與橢圓E交于不同的兩點A、B,且與直線l交于點P.證明:存在常數(shù)λ,使得|PT|2=λ|PA||PB|,并求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計劃在S市的A區(qū)開設(shè)分店.為了確定在該區(qū)開設(shè)分店的個數(shù),該公司對該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設(shè)分店的個數(shù),y表示這x個分店的年收入之和.

x(個)

2

3

4

5

6

y(百萬元)

2.5

3

4

4.5

6

(1)在年收入之和為2.5(百萬元)和3(百萬元)兩區(qū)中抽取兩分店調(diào)查,求這兩分店來自同一區(qū)的概率

(2)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合yx的關(guān)系,求y關(guān)于x的線性回歸方程;

(3)假設(shè)該公司在A區(qū)獲得的總年利潤z(單位:百萬元)與xy之間的關(guān)系為zy-0.05x2-1.4,請結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在A區(qū)開設(shè)多少個分店,才能使A區(qū)平均每個分店的年利潤最大?

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,側(cè)棱底面,底面三角形是正三角形,中點,則下列敘述正確的是( )

A. 平面

B. 是異面直線

C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】節(jié)能減排以來,蘭州市100戶居民的月平均用電量單位:度,以分組的頻率分布直方圖如圖.

求直方圖中x的值;求月平均用電量的眾數(shù)和中位數(shù);

估計用電量落在中的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關(guān)于x的方程 sinx+cosx=k在區(qū)間[0, ]上有兩個不同的實數(shù)解,則實數(shù)k的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將紅、黑、藍、白5張紙牌(其中白紙牌有2張)隨機分發(fā)給甲、乙、丙、丁4個人,每人至少分得1張,則下列兩個事件為互斥事件的是( )

A. 事件“甲分得1張白牌”與事件“乙分得1張紅牌”

B. 事件“甲分得1張紅牌”與事件“乙分得1張藍牌”

C. 事件“甲分得1張白牌”與事件“乙分得2張白牌”

D. 事件“甲分得2張白牌”與事件“乙分得1張黑牌”

查看答案和解析>>

同步練習冊答案