已知四個半徑為R的大球,上層一個,下層三個且兩兩相切疊放在一起,若在他們圍成的空隙中,有一個小球與這四個大球都外切,另有一個更大的球與這四個球都內(nèi)切,求小球的半徑r1和更大球的半徑r2
考點(diǎn):球的體積和表面積
專題:綜合題,空間位置關(guān)系與距離
分析:我們易將這四個球的球心連接成一個正四面體,并根據(jù)四球外切,得到四面體的棱長為2R,正四面體的外接球半徑為
6
2
R,由于這四個球之間有一個小球和這四個球都外切,則小球的球心與四面體的球體重合,進(jìn)而再由小球與其它四球外切,球心距(即正四面體外接球半徑)等于大球半徑與小球半徑之和,得到答案.
解答: 解:由已知中四個半徑都是R的球中的三個放在桌面上,使它兩兩外切,
然后在它們上面放上第四個球,使它與前三個都相切,
連接四個球的球心,得到一個棱長為2R的正四面體
則該正四面體的外接球半徑為
6
2
R
若這四個球之間有一個小球和這四個球都外切,則這個小球的半徑為r1=(
6
2
-1)R,
另有一個更大的球與這四個球都內(nèi)切,更大球的半徑r2=(
6
2
+1)R.
點(diǎn)評:本題考查的知識點(diǎn)是棱錐的結(jié)構(gòu)特征,球的結(jié)構(gòu)特征,其中根據(jù)已知條件求出四個半徑為1的球球心連接后所形成的正四面體的棱長及外接球半徑的長是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,Sn為其前n項和.已知4an=1+2Sn(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)是否存在正整數(shù)M,使得當(dāng)n>M時,a1•a4•a7…a3n-2>a78恒成立?若存在,求出M的最小值;若不存在,請說明理由;
(3)是否存在等差數(shù)列{bn},使得對任意的n∈N*,都有b1•an+b2•an-1+b3•an-2+…+bn-1•a2+bn•a1=2n-
n
2
-1?若存在,試求出{bn}的通項公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=4,AC=1,∠BAC=60°.求BC的長和△ABC的面積;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}為等差數(shù)列,且a1+a5=10,a4+a8=22.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}滿足b2=a5,b3=S9,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax2-x+b
(1)若函數(shù)f(x)在x=1處的切線方程為3x-y+4=0,求a、b的值
(2)若f(x)在(0,1)內(nèi)單調(diào)遞減,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,已知a2=2,S7=28,
(Ⅰ)求數(shù)列{an}的通項公式
(Ⅱ)令cn=3an(n∈N*)抽去數(shù)列{cn}的第3項、第6項、第9項、…、第3n項、…,余下的項的順序不變,構(gòu)成一個新的數(shù)列{tn},求數(shù)列{tn}的前2n項和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2alnx(a∈R且a≠0)
(1)當(dāng)實數(shù)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知正方形ABCD的邊長為32cm,點(diǎn)P在BC上,且BP=16cm,EF⊥AP且與AB、CD分別相交于E、F兩點(diǎn),求EF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<t≤
1
4
,那么
1
t
-t的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案