Processing math: 100%
18.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是邊長為2的正方形,E,F(xiàn)分別為線段DD1,BD的中點(diǎn).
(1)求證:EF∥平面ABC1D1;
(2)四棱柱ABCD-A1B1C1D1的外接球的表面積為16π,求證:EF⊥平面EA1C1

分析 (1)連接BD1,由EF為中位線,得EF∥D1B,由此能證明EF∥平面ABC1D1
(2)推導(dǎo)出四棱柱ABCD-A1B1C1D1的外接球的半徑R=2,求出AA1=22,推導(dǎo)出EF⊥A1E,A1C1⊥EF,由此能證明EF⊥平面EA1C1

解答 證明:(1)連接BD1,在△DD1B中,E,F(xiàn)分別為線段DD1,BD的中點(diǎn),
∴EF為中位線,
∴EF∥D1B,而D1B?面ABC1D1,EF?面ABC1D1
∴EF∥平面ABC1D1
(2)∵四棱柱ABCD-A1B1C1D1的外接球的表面積為16π,
∴四棱柱ABCD-A1B1C1D1的外接球的半徑R=2,
設(shè)AA1=a,則12a2+4+4=2,解得a=22
∵AB=2,∴EF2=4,A1E2=6,A1F2=10,
EF2+A1E2=A1F2,即EF⊥A1E,
∵A1C1⊥平面1D1D,∴A1C1⊥EF,
又A1C1∩A1E=A1,∴EF⊥平面EA1C1

點(diǎn)評(píng) 本題考查線面平行、線面垂直的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a、b、c.若a=2,cosA=13,則△ABC面積的最大值為( �。�
A.2B.2C.12D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若動(dòng)點(diǎn)A(x1,y2)、B(x2,y2)分別在直線l1:x+y-11=0和l2:x+y-1=0上移動(dòng),則AB中點(diǎn)M所在直線方程為( �。�
A.x-y-6=0B.x+y+6=0C.x-y+6=0D.x+y-6=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x1x-lnx.
(1)求f(x)的遞增區(qū)間;
(2)證明:當(dāng)x∈(0,1)時(shí),x-1<xlnx;
(3)設(shè)c∈(0,1),證明:當(dāng)x∈(0,1)時(shí),1+(c-1)x>cx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,D,E分別是被BC,AB的中點(diǎn),點(diǎn)F在棱CC1上,AB=BC=CA=CF=2,AA1=3,則下列說法正確的是(  )
A.設(shè)平面ADF與平面BEC1的交線為l,則直線C1E與l相交
B.在棱A1C1上存在點(diǎn)N,使得三棱錐N-ADF的體積為37
C.設(shè)點(diǎn)M在BB1上,當(dāng)BM=1時(shí),平面CAM⊥平面ADF
D.在棱A1B1上存在點(diǎn)P,使得C1P⊥AF

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若a=2,b=2,B=45°,則角A的大小為30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.關(guān)于x的方程(2017-x)(1999+x)=2016恰有兩個(gè)根為x1、x2,且x1、x2分別滿足3x1=a-3x1和log3(x2-1)3=a-3x2,則x1+x2+a=61.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若直線xa+y=1(a>0,b>0)過點(diǎn)(2,2),則a+b的最小值等于( �。�
A.2B.3C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.計(jì)算下列梯形的面積,上底為a,下底為b,高為h,請(qǐng)寫出該問題的算法.

查看答案和解析>>

同步練習(xí)冊(cè)答案