已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)若過點(2,0)的直線與橢圓相交于兩點,設(shè)為橢圓上一點,且滿足為坐標原點),當 時,求實數(shù)取值范圍.

(1) ;( Ⅱ).

解析試題分析:(1)由題意知,所以.由此能求出橢圓C的方程.(2)由題意知直線AB的斜率存在.設(shè)AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),由得(1+2k2)x2-8k2x+8k2-2=0再由根的判別式和嘏達定理進行求解.
解:(1)由題意知, 所以
.    2分
又因為,所以
故橢圓的方程為.  4分
(2)由題意知直線的斜率存在.
設(shè),,
.
,.   6分
,.
,∴,,
.
∵點在橢圓上,∴
. 8分
,∴,∴
,
,∴. 10分
,∵,∴
,∴實數(shù)t取值范圍為.(12分)
考點:1. 橢圓的方程;2.直線與橢圓的方程.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,橢圓的焦點在x軸上,左右頂點分別為,上頂點為B,拋物線分別以A,B為焦點,其頂點均為坐標原點O,相交于直線上一點P.
(1)求橢圓C及拋物線的方程;
(2)若動直線與直線OP垂直,且與橢圓C交于不同的兩點M,N,已知點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

過拋物線C:上的點M分別向C的準線和x軸作垂線,兩條垂線及C的準線和x軸圍成邊長為4的正方形,點M在第一象限.
(1)求拋物線C的方程及點M的坐標;
(2)過點M作傾斜角互補的兩條直線分別與拋物線C交于A,B兩點,且直線AB過點(0,-1),求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點的坐標分別為,.直線,相交于點,且它們的斜率之積是,記動點的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)是曲線上的動點,直線,分別交直線于點,線段的中點為,求直線與直線的斜率之積的取值范圍;
(3)在(2)的條件下,記直線的交點為,試探究點與曲線的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖為橢圓C:的左、右焦點,D,E是橢圓的兩個頂點,橢圓的離心率,的面積為.若點在橢圓C上,則點稱為點M的一個“橢圓”,直線與橢圓交于A,B兩點,A,B兩點的“橢圓”分別為P,Q.

(1)求橢圓C的標準方程;
(2)問是否存在過左焦點的直線,使得以PQ為直徑的圓經(jīng)過坐標原點?若存在,求出該直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2012•廣東)在平面直角坐標系xOy中,已知橢圓C:的離心率,且橢圓C上的點到點Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應(yīng)的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓過點,且離心率.
(1)求橢圓C的方程;
(2)已知過點的直線與該橢圓相交于A、B兩點,試問:在直線上是否存在點P,使得是正三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點是拋物線上不同的兩點,點在拋物線的準線上,且焦點
到直線的距離為.
(I)求拋物線的方程;
(2)現(xiàn)給出以下三個論斷:①直線過焦點;②直線過原點;③直線平行軸.
請你以其中的兩個論斷作為條件,余下的一個論斷作為結(jié)論,寫出一個正確的命題,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的兩個焦點分別為,且點在橢圓C上,又.
(1)求焦點F2的軌跡的方程;
(2)若直線與曲線交于M、N兩點,以MN為直徑的圓經(jīng)過原點,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習冊答案