【題目】某公司計劃在迎春節(jié)聯(lián)歡會中設一項抽獎活動:在一個不透明的口袋中裝入外形一樣號
碼分別為1,2,3,…,10的十個小球。活動者一次從中摸出三個小球,三球號碼有且僅有兩個連號的為三等獎,獎金30元;三球號碼都連號為二等獎,獎金60元;三球號碼分別為1,5,10為一等獎,獎金240元;其余情況無獎金。
(1)求員工甲抽獎一次所得獎金ξ的分布列與期望;
(2)員工乙幸運地先后獲得四次抽獎機會,他得獎次數(shù)的方差是多少?
【答案】
E |
E |
【解析】
試題分析:本題主要考查生活中的概率知識,離散型隨機變量的分布列和數(shù)學期望以及二項分布的方差問題,考查學生的分析能力和計算能力.第一問,10個球中摸3個,所以基本事件總數(shù)為,的可能取值為4種,分別數(shù)出每一種情況符合題意的種數(shù),與基本事件總數(shù)相除求出4個概率值,列出分布列,利用求期望;第二問,利用第一問分布列的結論,用間接法先求出乙一次抽獎中獎的概率,通過分析題意,可得中獎次數(shù)符合二項分布,利用的公式計算方差.
試題解析:(1)甲抽獎一次,基本事件的總數(shù)為,獎金的所有可能取值為0,30,60,240.
一等獎的情況只有一種,所有獎金為120元的概率為,
三球連號的情況有1,2,3;2,3,4;……8,9,10共8種,得60元的概率為,
僅有兩球連號中,對應1,2與9,10的各有7種:對應2,3;3,4;……8,9各有6種.
得獎金30元的概率為,
得獎金0元的概率為, 4分
的分布列為:
6分
8分
(2)由(1)可得乙一次抽獎中中獎的概率為
四次抽獎是相互獨立的,所以中獎次數(shù)
故. 12分
科目:高中數(shù)學 來源: 題型:
【題目】設A1 , A2 , A3 , …,An是集合{1,2,3,…,n}的n個非空子集(n≥2),定義aij= ,其中i,j=1,2,…,n,這樣得到的n2個數(shù)之和記為S(A1 , A2 , A3 , …,An),簡記為S,下列三種說法:①S與n的奇偶性相同;②S是n的倍數(shù);③S的最小值為n,最大值為n2 . 其中正確的判斷是( )
A.①②
B.①③
C.②③
D.③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題共l2分)
如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延長A1C1至點P,使C1P=A1C1,連接AP交棱CC1于D.
(Ⅰ)求證:PB1∥平面BDA1;
(Ⅱ)求二面角A-A1D-B的平面角的余弦值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)給出定義:
設是函數(shù)的導數(shù),是函數(shù)的導數(shù),若方程有實數(shù)解,則稱點為函數(shù)的“拐點”,
某同學經過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”:任意一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心,給定函數(shù),請根據(jù)上面探究結果:計算____________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣lnx(a∈R)
(1)當a=1時,求函數(shù)y=f(x)的單調區(qū)間;
(2)若x∈(0,1],|f(x)|≥1恒成立,求a的取值范圍;
(3)若a= ,證明:ex﹣1f(x)≥x.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sinωxcosωx+2 sin2ωx﹣ (ω>0)的最小正周期為π.
(1)求函數(shù)f(x)的單調增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移 個單位長度,再向上平移1個單位長度,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在 上的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高考復習經過二輪“見多識廣”之后,為了研究考前“限時搶分”強化訓練次數(shù)與答題正確率﹪的關系,對某校高三某班學生進行了關注統(tǒng)計,得到如下數(shù)據(jù):
1 | 2 | 3 | 4 | |
20 | 30 | 50 | 60 |
(1)求關于的線性回歸方程,并預測答題正確率是100﹪的強化訓練次數(shù);
(2)若用表示統(tǒng)計數(shù)據(jù)的“強化均值”(精確到整數(shù)),若“強化均值”的標準差在區(qū)間內,則強化訓練有效,請問這個班的強化訓練是否有效?
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,=- ,
樣本數(shù)據(jù)的標準差為:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的短軸長為2,離心率e= .
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m與橢圓交于不同的兩點A,B,與圓x2+y2= 相切于點M.
(i)證明:OA⊥OB(O為坐標原點);
(ii)設λ= ,求實數(shù)λ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com