【題目】已知函數(shù).

(Ⅰ)若函數(shù)時(shí)取得極值,求實(shí)數(shù)的值;

(Ⅱ)當(dāng)時(shí),求零點(diǎn)的個(gè)數(shù).

【答案】(Ⅰ)1;(Ⅱ)兩個(gè).

【解析】

(Ⅰ),由,解得,檢驗(yàn)時(shí)取得極小值即可;(II)令,由,得,討論單調(diào)性得時(shí)取得極小值,并證明極小值為.再由零點(diǎn)存在定理說明函數(shù)上各有一個(gè)零點(diǎn),即可解得

(I)定義域?yàn)?/span>.

.

由已知,得,解得.

當(dāng)時(shí),.

所以.

所以減區(qū)間為,增區(qū)間為.

所以函數(shù)時(shí)取得極小值,其極小值為,符合題意

所以.

(II)令,由,得.

所以.

所以減區(qū)間為,增區(qū)間為.

所以函數(shù)時(shí)取得極小值,其極小值為.

因?yàn)?/span>,所以.

所以.所以.

因?yàn)?/span>

又因?yàn)?/span>,所以.

所以.

根據(jù)零點(diǎn)存在定理,函數(shù)上有且僅有一個(gè)零點(diǎn).

因?yàn)?/span>,.

,得.

又因?yàn)?/span>,所以.

所以當(dāng)時(shí),.

根據(jù)零點(diǎn)存在定理,函數(shù)上有且僅有一個(gè)零點(diǎn).

所以,當(dāng)時(shí),有兩個(gè)零點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△中,,分別為的中點(diǎn),的中點(diǎn),,將△沿折起到△的位置,使得平面平面,如圖2.

(Ⅰ)求證:

(Ⅱ)求直線和平面所成角的正弦值;

(Ⅲ)線段上是否存在點(diǎn),使得直線所成角的余弦值為?若存在,求出的值;若不存在,說明理由

圖1 圖2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,為了保護(hù)環(huán)境,實(shí)現(xiàn)城市綠化,某房地產(chǎn)公司要在拆遷地長方形ABCD處規(guī)劃一塊長方形地面HPGC,建造住宅小區(qū)公園,但不能越過文物保護(hù)區(qū)三角形AEF的邊線EF.已知AB=CD=200 m,BC=AD=160 m,AF=40 m,AE=60 m,問如何設(shè)計(jì)才能使公園占地面積最大,求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的個(gè)數(shù)是( )

①命題已知,,則的充分不必要條件;

②“函數(shù)的最小正周期為”是“”的必要不充分條件;

上恒成立上恒成立;

④“平面向量的夾角是鈍角”的充要條件是“

⑤命題函數(shù)的值域?yàn)?/span>,命題函數(shù)是減函數(shù).若為真命題,為假命題,則實(shí)數(shù)的取值范圍是.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=2sin2x+-2cosx--5a+2

1)設(shè)t=sinx+cosx,將函數(shù)fx)表示為關(guān)于t的函數(shù)gt),求gt)的解析式;

2)對任意x[0,],不等式fx)≥6-2a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>R的函數(shù)fx)=是奇函數(shù).

1)求ab的值;

2)若對任意的t∈R,不等式ft22t)+f2t2k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)的最大值為,則實(shí)數(shù)的取值范圍是()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】符號表示不大于x的最大整數(shù),例如:.

(1)解下列兩個(gè)方程

(2)設(shè)方程: 的解集為A,集合,求實(shí)數(shù)k的取值范圍;

(3)求方程的實(shí)數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABCD的底面是平行四邊形,PDAB,OAD的中點(diǎn),BOCO.

(1)求證:AB⊥平面PAD;

(2)若AD2AB=4, PAPD,點(diǎn)M在側(cè)棱PD上,且PD3MD,二面角PBCD的大小為,求直線BP與平面MAC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案