【題目】A市某機構(gòu)為了調(diào)查該市市民對我國申辦2034年足球世界杯的態(tài)度,隨機選取了140位市民進行調(diào)查,調(diào)查結(jié)果統(tǒng)計如下:
支持 | 不支持 | 合計 | |
男性市民 | 60 | ||
女性市民 | 50 | ||
合計 | 70 | 140 |
(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)若在被調(diào)查的支持申辦足球世界杯的男性市民中有5位退休老人,其中2位是教師,求從這5人中隨機抽取3人至多有1人是教師的概率.
【答案】(1)表格見解析;(2)
【解析】
(1)分析數(shù)據(jù),簡單計算,可得結(jié)果.
(2)給5位老人記標記并確定2位教師,列舉出所有可能結(jié)果,然后計算“5人中隨機抽取3人至多有1人是教師”的個數(shù),根據(jù)古典概型,可得結(jié)果.
(1)由題可知:
調(diào)查結(jié)果統(tǒng)計如下:
支持 | 不支持 | 合計 | |
男性市民 | 40 | 20 | 60 |
女性市民 | 30 | 50 | 80 |
合計 | 70 | 70 | 140 |
(2)記5人分別為a,b,c,d,e,其中a,b表示教師
從這5人中隨機抽取3人的情況有:abc,abd,abe,acd,
ace,ade,bcd,bce,bde,cde,共10種;
其中至多有人是教師的情況有:acd,ace,ade,bcd,
bce,bde,cde,共7種,
∴所求的概率為P;
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣alnx,a>0.
(1)若f(x)在x=1處取得極值,求實數(shù)a的值;
(2)求f(x)在區(qū)間[2,+∞)上的最小值;
(3)在(1)的條件下,若g(x)=x2﹣f(x),求證:當1<x<e2,恒有x.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)、分別是橢圓C:的左、右焦點,,直線1過且垂直于x軸,交橢圓C于A、B兩點,連接A、B、,所組成的三角形為等邊三角形。
(1)求橢圓C的方程;
(2)過右焦點的直線m與橢圓C相交于M、N兩點,試問:橢圓C上是否存在點P,使成立?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線:,直線:(是參數(shù)).
(1)寫出曲線的參數(shù)方程,直線的普通方程;
(2)過曲線上任一點作與夾角為的直線,交于點,求的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(m﹣1)x2+3x﹣2m,(m∈R).
(1)解關(guān)于x的不等式f(x)+x2﹣1<4x﹣m;
(2)若f(x)<0的解集為(﹣4,1),g(x)=f(x)﹣x+5,對于n∈N*,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義為不超過的最大整數(shù),例如,.已知是等比數(shù)列,若,且前項和為.
(1)若不等式對任意的恒成立,求實數(shù)的取值范圍;
(2)求的通項公式;
(3)若,求數(shù)列的前項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com