已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,H是BC邊的中點,連接DH與BE相交于點G.
(1)求證:BF=AC;
(2)求證:CE=BF;
(3)CE與BG的大小關(guān)系如何?試證明你的結(jié)論.
(1)證明:∵CD⊥AB,∠ABC=45°,
∴△BCD是等腰直角三角形.
∴BD=CD.
∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,
∴∠DBF=∠DCA.
在Rt△DFB和Rt△DAC中,
∵
∴Rt△DFB≌Rt△DAC(ASA).
∴BF=AC;
(2)證明:∵BE平分∠ABC,
∴∠ABE=∠CBE.
在Rt△BEA和Rt△BEC中
,
∴Rt△BEA≌Rt△BEC(ASA).
∴CE=AE=AC.
又由(1),知BF=AC,
∴CE=AC=BF;
(3)證明:∠ABC=45°,CD垂直AB于D,則CD=BD.
H為BC中點,則DH⊥BC(等腰三角形“三線合一”)
連接CG,則BG=CG,∠GCB=∠GBC=∠ABC=×45°=22.5°,∠EGC=45°.
又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.
∵△GEC是直角三角形,
∴CE2+GE2=CG2,
∵DH垂直平分BC,
∴BG=CG,
∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=CE,
∴BG>CE.
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)求出△ABC的面積;
(2)在圖中作出△ABC關(guān)于y軸的對稱圖形△A1B1C1;
(3)寫出點A1,B1,C1的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
數(shù)列{an}中,a1=a2=1,an+2=an+1+an對所有正整數(shù)n都成立,則a10等于( )
A.34 B.55
C.89 D.100
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)數(shù)列{an}的前n項和為Sn,已知a1=a,an+1=Sn+3n,n∈N*.
(1)記bn=Sn-3n,求數(shù)列{bn}的通項公式;
(2)若an+1≥an,n∈N*,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
數(shù)列{an}滿足an+1+(-1)nan=2n-1,則{an}的前60項和為( )
A.3 690 B.3 660
C.1 845 D.1 830
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com