精英家教網 > 高中數學 > 題目詳情

【題目】已知二次函數f(x)=x2+bx+4
(1)若f(x)為偶函數,求b的值;
(2)若f(x)有零點,求b的取值范圍;
(3)求f(x)在區(qū)間[﹣1,1]上的最大值g(b).

【答案】
(1)解:因為f(x)為偶函數,

所以x2+bx+4=x2﹣bx+4,

解得b=0


(2)解:因為f(x)有零點,

所以△=b2﹣16≥0,

解得b≥4或b≤﹣4


(3)解:因為f(x)的對稱軸為

,即b≤0時,

g(b)=f(﹣1)=5﹣b;

,即b>0時,

g(b)=f(1)=5+b.

綜上所述:


【解析】(1)因為f(x)為偶函數,所以f(﹣x)=f(x),列出等式,求出b的值即可;(2)根據f(x)有零點,可得△≥0,據此求出b的取值范圍即可;(3)首先求出f(x)的對稱軸 ,然后分① ,② 兩種情況討論,求出f(x)在區(qū)間[﹣1,1]上的最大值g(b)即可.
【考點精析】本題主要考查了二次函數的性質的相關知識點,需要掌握當時,拋物線開口向上,函數在上遞減,在上遞增;當時,拋物線開口向下,函數在上遞增,在上遞減才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下列函數中,在其定義域內既是奇函數又是減函數的是(
A.y=x
B.y=
C.y=﹣x3
D.y=( x

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是網絡工作者經常用來解釋網絡運作的蛇形模型:數字1出現(xiàn)在第1行;數字2,3出現(xiàn)在第2行;數字6,5,4(從左至右)出現(xiàn)在第3行;數字7,8,9,10出現(xiàn)在第4行,依此類推,則第20行從左至右的第4個數字應是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某同學在生物研究性學習中,對春季晝夜溫差大小與黃豆種子發(fā)芽多少之間的關系進行研究,于是他在4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數,得到如下資料:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

溫差

10

11

13

12

8

發(fā)芽數/顆

23

25

30

26

16

(1)從這5天中任選2天,求這2天發(fā)芽的種子數均不小于25的概率;

(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數據,請根據這5天中的另三天的數據,求出關于的線性回歸方程;

(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

附:回歸直線的斜率和截距的最小二乘估計公式分別為 .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】頂點在原點,焦點在x軸正半軸的拋物線,經過點(3,6),
(1)求拋物線截直線y=2x﹣6所得的弦長.
(2)討論直線y=kx+1與拋物線的位置關系,并求出相應的k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】兩圓x2+y2+2ax+a2﹣4=0和x2+y2﹣4by﹣1+4b2=0恰有三條公切線,若a∈R,b∈R,且ab≠0,則 的最小值為(
A.
B.
C.1
D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列命題:
①直線l的方向向量為 =(1,﹣1,2),直線m的方向向量 =(2,1,﹣ ),則l與m垂直;
②直線l的方向向量 =(0,1,﹣1),平面α的法向量 =(1,﹣1,﹣1),則l⊥α;
③平面α、β的法向量分別為 =(0,1,3), =(1,0,2),則α∥β;
④平面α經過三點A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),向量 =(1,u,t)是平面α的法向量,則u+t=1.
其中真命題的是 . (把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在長方體ABCD﹣A1B1C1D1中,E、M、N分別是BC、AE、D1C的中點,AD=AA1 , AB=2AD
(Ⅰ)證明:MN∥平面ADD1A1
(Ⅱ)求直線AD與平面DMN所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某大學藝術專業(yè)400名學生參加某次測評,根據男女學生人數比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數,將數據分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數小于70的概率;

(Ⅱ)已知樣本中分數小于40的學生有5人,試估計總體中分數在區(qū)間[40,50)內的人數;

(Ⅲ)已知樣本中有一半男生的分數不小于70,且樣本中分數不小于70的男女生人數相等.試估計總體中男生和女生人數的比例.

查看答案和解析>>

同步練習冊答案