【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計其分?jǐn)?shù)小于70的概率;

(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);

(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.

【答案】(1)0.4(2)20(3)3:2

【解析】試題分析:(Ⅰ)根據(jù)頻率=組距×高,可得分?jǐn)?shù)小于70的概率為:1﹣(0.04+0.02)×10;(Ⅱ)先計算樣本中分?jǐn)?shù)小于40的頻率,進(jìn)而計算分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的頻率,可估計總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);

(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.進(jìn)而得到答案.

試題解析:

(1)由頻率分布直方圖知,

分?jǐn)?shù)在的頻率為

分?jǐn)?shù)在的頻率為,

則分?jǐn)?shù)小于70的頻率為,

故從總體的400名學(xué)生中隨機(jī)抽取一人,估計其分?jǐn)?shù)小于70的概率為.

(2)由頻率分布直方圖知,

樣本中分?jǐn)?shù)在區(qū)間的人數(shù)為 (人),

已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,

所以樣本中分?jǐn)?shù)在區(qū)間內(nèi)的人數(shù)為 (人),

設(shè)總體中分?jǐn)?shù)在區(qū)間內(nèi)的人數(shù)為,

,得,

所以總體中分?jǐn)?shù)在區(qū)間內(nèi)的人數(shù)為20人.

(3)由頻率分布直方圖知,

分?jǐn)?shù)不小于70的人數(shù)為 (人),

已知分?jǐn)?shù)不小于70的男女生人數(shù)相等,

故分?jǐn)?shù)不小于70分的男生人數(shù)為30人,

又因為樣本中有一半男生的分?jǐn)?shù)不小于70,

故男生的頻率為:

即女生的頻率為: ,

即總體中男生和女生人數(shù)的比例約為: .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式ax2+(1﹣a)x﹣1>0
(1)當(dāng)a=2時,求不等式的解集.
(2)當(dāng)a>﹣1時.求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正四面體ABCD的棱長為2,棱AD與平面α所成的角θ∈[ , ],且頂點A在平面α內(nèi),B,C,D均在平面α外,則棱BC的中點E到平面α的距離的取值范圍是(

A.[ ,1]
B.[ ,1]
C.[ ]
D.[ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為菱形,四邊形為平行四邊形,設(shè)相交于點,

(1)證明:平面平面;

(2)若,求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求曲線與直線垂直的切線方程;

(2)求的單調(diào)遞減區(qū)間;

(3)若存在,使函數(shù)成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由于渤海海域水污染嚴(yán)重,為了獲得第一手的水文資料,潛水員需要潛入水深為60米的水底進(jìn)行作業(yè),根據(jù)經(jīng)驗,潛水員下潛的平均速度為(米/單位時間),每單位時間消耗氧氣(升),在水底作業(yè)10個單位時間,每單位時間消耗氧氣(升),返回水面的平均速度為(米/單位時間),每單位時間消耗氧氣(升),記該潛水員完成此次任務(wù)的消耗氧氣總量為(升).

(1)求關(guān)于的函數(shù)關(guān)系式;

(2)若,求當(dāng)下潛速度取什么值時,消耗氧氣的總量最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上是奇函數(shù).

1)求

2)對,不等式恒成立,求實數(shù)的取值范圍;

3)令,若關(guān)于的方程有唯一實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:在直角梯形 , , ,把沿折到的位置,使.

(Ⅰ)求證: 平面

(Ⅱ)求平面與平面的所夾的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中的前n項和為Sn= ,又an=log2bn
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案