【題目】如圖:在直角梯形 , , , ,把沿折到的位置,使.

(Ⅰ)求證: 平面;

(Ⅱ)求平面與平面的所夾的銳二面角的大小.

【答案】(1)見(jiàn)解析(2)

【解析】試題分析:(1)由,進(jìn)而證得平面,得到,

中,由勾股定理,得到,利用直線與平面垂直的判定定理,作出證明;

(2)取, , 分別為 , 軸,建立空間直角坐標(biāo)系,由題意知面的法向量,求出平面的一個(gè)法向量,利用空間的夾角公式,即可求解二面角的大小.

試題解析:

(1),,,平面

平面,.

中, ,

,又.∴平面.又平面.

又因在直角梯形, ,

所以為正方形,平面

(2)取, 分別為, 軸,建立如圖空間直角坐標(biāo)系,由題意知面的法向量,設(shè)平面的法向量, ,

.

平面與平面的所夾的銳二面角為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列中, ,數(shù)列滿足.

(1)求證:數(shù)列是等差數(shù)列,寫(xiě)出的通項(xiàng)公式;

(2)求數(shù)列的通項(xiàng)公式及數(shù)列中的最大項(xiàng)與最小項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;

(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);

(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C 的左焦點(diǎn)F為圓的圓心,且橢圓C上的點(diǎn)到點(diǎn)F的距離最小值為

I)求橢圓C的方程;

II)已知經(jīng)過(guò)點(diǎn)F的動(dòng)直線與橢圓C交于不同的兩點(diǎn)A、B,點(diǎn)M坐標(biāo)為),證明: 為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)又本l:(m+3)x-(m+2)ym=0與圓C:(x-3)2+(y-4)2=9.

(1)求證:無(wú)論m為何值,直線l與圓C總相交.

(2)求直線l被圓C所截得的弦長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求同時(shí)滿足條件:①與軸相切,②圓心在直線上,③直線被截得的弦長(zhǎng)為的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解學(xué)生的體能情況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,所得數(shù)據(jù)整理后,畫(huà)出頻率分布直方圖(如圖所示),圖中從左到右各小長(zhǎng)方形面積之比為,第二小組頻數(shù)為.

(1)學(xué)生跳繩次數(shù)的中位數(shù)落在哪個(gè)小組內(nèi)?

(2)第二小組的頻率是多少?樣本容量是多少?

(3)若次數(shù)在以上(含次)為良好,試估計(jì)該學(xué)校全體高一學(xué)生的良好率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1且關(guān)于直線l對(duì)稱.

(1)若圓心在直線上,過(guò)點(diǎn)作圓的切線,求切線的方程;

(2)點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為B,若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}是各項(xiàng)為正數(shù)的等比數(shù)列,且a2=9,a4=81.
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)若bn=log3an , 求證:數(shù)列{bn}是等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案