【題目】已知數(shù)列滿足: ,,其中.

(1)求數(shù)列的通項公式;

(2)記數(shù)列的前項和為,問是否存在正整數(shù),使得成立?若存在,求的最小值;若不存在,請說明理由.

【答案】(1);(2)存在正整數(shù),使得成立,且的最小值為3

【解析】試題分析:(1) )中n用n-1代,得 ,兩式作差,可求得,要檢驗n=1時。(2)通過待定系數(shù)法可求得,再由得:,可知{}是等比數(shù)列,求得。另由錯位相減法可求得前n項和,代入,即:

化簡得:,由于f(m)=是單調遞增函數(shù),所以采用逐個檢驗法可求解。

試題解析:(1)由 )①

得:當時,,故

時,

①-②得:

又上式對也成立

變形得:

,得:

,故

(2)由(1)知:

③-④得:

假設存在正整數(shù),使得,即:

化簡得:

由指數(shù)函數(shù)與一次函數(shù)的單調性知,是關于的增函數(shù)

∴當時,恒有

∴存在正整數(shù),使得成立,且的最小值為3.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線,則下面結論正確的是 ( )

A. 上各點的橫坐標縮短到原來的倍, 縱坐標不變,再把得到的曲線向左平移個單位長度, 得到曲線

B. 上各點的橫坐標縮短到原來的倍 ,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線

C. 上各點的橫坐標伸長到原來的倍 ,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線

D. 上各點的橫坐標伸長到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在極坐標系中,已知點,圓

I)在極坐標系中,以極點為原點,極軸為軸正半軸建立平面直角坐標系,取相同的長度單位,求圓的直角坐標方程;

II)求點到圓圓心的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線與直線)交于,兩點.

1)當時,分別求在點處的切線方程;

2軸上是否存在點,使得當變動時,總有?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)若函數(shù)有零點,求實數(shù)的取值范圍;

(2)若對任意的,都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線與直線)交于,兩點.

1)當時,分別求在點處的切線方程;

2軸上是否存在點,使得當變動時,總有?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線 的焦點為,過點的直線相交于兩點,點關于軸的對稱點為

(Ⅰ)判斷點是否在直線上,并給出證明;

(Ⅱ)設,求的內切圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐中,四邊形是直角梯形, 底面, 的中點, 點在上,且.

(1)證明: 平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

求函數(shù)的單調遞減區(qū)間;

求函數(shù)在區(qū)間上的最大值及最小值.

查看答案和解析>>

同步練習冊答案