【題目】如圖所示,四棱錐中,四邊形是直角梯形, 底面 的中點, 點在上,且.

(1)證明: 平面;

(2)求直線與平面所成角的正弦值.

【答案】(I)見解析;(II),

【解析】試題分析:(1)要證MN∥平面PAD,只需在面PAD內(nèi)找到一條直線和MN平行即可,而根據(jù)條件,易作輔助線過MMECDPDE,連接AE,下證MNAE;

(2)求直線MN與平面PCB所成的角,關鍵找直線MN在平面PCB內(nèi)的射影,而根據(jù)條件,易作輔助線過N點作NQAPBP于點Q,NFCBCB于點F,連接QF,過N點作NHQFQFH,連接MH,下證NH⊥平面PBC,∴∠NMH為直線MN與平面PCB所成的角.解MNH即可.

試題解析:

(1)過點點,連結,

, 又 為平行四邊形, 平面

(2)過點作于點于點,

連結,過點作,連結

易知,

, 為直線與平面所成角,

通過計算可得

,

,

直線與平面所成角為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖已知是邊長為的正方形的中心,點分別是的中點,沿對角線把正方形折成二面角.

(1)證明:四面體的外接球的體積為定值,并求出定值;

(2)若二面角為直二面角,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足:, ,,其中.

(1)求數(shù)列的通項公式;

(2)記數(shù)列的前項和為,問是否存在正整數(shù),使得成立?若存在,求的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某游樂場推出了一項趣味活動,參加活動者需轉(zhuǎn)動如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動后,待轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄指針所指區(qū)域中的數(shù).設兩次記錄的數(shù)分別為,獎勵規(guī)則如下:①若,則獎勵玩具一個;②若,則獎勵水杯一個;③其余情況獎勵飲料一瓶.假設轉(zhuǎn)盤質(zhì)地均勻,四個區(qū)域劃分均勻,小亮準備參加此項活動.

(1)求小亮獲得玩具的概率;

(2)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《續(xù)古摘奇算法》(楊輝)一書中有關于三階幻方的問題:將1,2,3,4,5,6,7,8,9分別填入的方格中,使得每一行,每一列及對角線上的三個數(shù)的和都相等,我們規(guī)定:只要兩個幻方的對應位置(如每行第一列的方格)中的數(shù)字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個數(shù)是( )

8

3

4

1

5

9

6

7

2

A. 9 B. 8 C. 6 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了解各!秶鴮W》課程的教學效果,組織全市各學校高二年級全體學生參加了國學知識水平測試,測試成績從高到低依次分為A、BC、D四個等級.隨機調(diào)閱了甲、乙兩所學校各60名學生的成績,得到如下的分布圖:

)試確定圖中的值;

)若將等級A、B、CD依次按照分、80分、60分、50分轉(zhuǎn)換成分數(shù),試分別估計兩校學生國學成績的均值;

)從兩校獲得A等級的同學中按比例抽取5人參加集訓,集訓后由于成績相當,決定從中隨機選2人代表本市參加省級比賽,求兩人來自同一學校的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該定價按事先擬定的價格進行試銷,得到如下數(shù)據(jù):

單價(元)

8

8.2

8.4

8.6

8.8

9

銷量(元)

90

84

83

80

75

68

(1)求回歸直線方程;

(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應定為多少元?

附: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,過左焦點且垂直于長軸的弦長為

(1)求橢圓的標準方程;

(2)點為橢圓的長軸上的一個動點,過點且斜率為的直線交橢圓兩點,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)實行裁員增效,已知現(xiàn)有員工人,每人每年可創(chuàng)純收益(已扣工資等)1萬元,據(jù)評估,在生產(chǎn)條件不變的情況下,每裁員一人,則留崗員工每人每年可多創(chuàng)收0.01萬元,但每年需付給下崗工人每位0.4萬元的生活費,并且企業(yè)正常運轉(zhuǎn)所需人數(shù)不得少于現(xiàn)有員工的,設該企業(yè)裁員人后,年純收益為萬元.

(1)寫出關于的函數(shù)關系式,并指出的取值范圍;

(2)當時,該企業(yè)應裁員多少人,才能獲得最大的經(jīng)濟效益(注:在保證能取得最大的經(jīng)濟效益的情況下,能少裁員,應盡量少裁員)?

查看答案和解析>>

同步練習冊答案