設(shè)F1,F(xiàn)2分別是橢圓C:數(shù)學(xué)公式+數(shù)學(xué)公式=1(a>b>0)的焦點(diǎn),若橢圓C上存在點(diǎn)P,使線段PF1的垂直平分線過點(diǎn)F2,則橢圓離心率的取值范圍是


  1. A.
    (0,數(shù)學(xué)公式]
  2. B.
    數(shù)學(xué)公式數(shù)學(xué)公式
  3. C.
    [數(shù)學(xué)公式,1)
  4. D.
    [數(shù)學(xué)公式,數(shù)學(xué)公式
C
分析:若橢圓C上存在點(diǎn)P,使線段PF1的垂直平分線過點(diǎn)F2,只需以點(diǎn)F2為圓心2c為半徑的圓與橢圓有交點(diǎn)即可.
解答:因?yàn)樵O(shè)F1,F(xiàn)2分別是橢圓C:+=1(a>b>0)的焦點(diǎn),若橢圓C上存在點(diǎn)P,使線段PF1的垂直平分線過點(diǎn)F2,
則以點(diǎn)F2為圓心2c為半徑的圓與橢圓有交點(diǎn),由橢圓的性質(zhì)可知只需滿足a-c≤2c,解得,所以橢圓離心率的取值范圍是[,1).
故選C.
點(diǎn)評:本題考查橢圓的簡單性質(zhì)的應(yīng)用,考查轉(zhuǎn)化是的應(yīng)用,以及計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn).
(1)設(shè)橢圓C上點(diǎn)(
3
3
2
)
到兩點(diǎn)F1、F2距離和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)設(shè)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段KF1的中點(diǎn)B的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn),若橢圓C上的一點(diǎn)A(1,
3
2
)到F1,F(xiàn)2的距離之和為4.
(1)求橢圓方程;
(2)若M,N是橢圓C上兩個(gè)不同的點(diǎn),線段MN的垂直平分線與x軸交于點(diǎn)P,求證:|
OP
|<
1
2

(3)若M,N是橢圓C上兩個(gè)不同的點(diǎn),Q是橢圓C上不同于M,N的任意一點(diǎn),若直線QM,QN的斜率分別為KQM•KQN.問:“點(diǎn)M,N關(guān)于原點(diǎn)對稱”是KQM•KQN=-
3
4
的什么條件?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),P是C上的一個(gè)動(dòng)點(diǎn),且|PF1|+|PF2|=4,C的離心率為
1
2

(Ⅰ)求C方程;
(Ⅱ)是否存在過點(diǎn)F2且斜率存在的直線l與橢圓交于不同的兩點(diǎn)C、D,使得|F1C|=|F1D|.若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓C:
x2
a2
+
x2
b2
=1(a>b>0)的焦點(diǎn),若橢圓C上存在點(diǎn)P,使線段PF1的垂直平分線過點(diǎn)F2,則橢圓離心率的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶二模)設(shè)F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn).
(1)設(shè)橢圓C上的點(diǎn)(
2
2
,
3
2
)
到F1,F(xiàn)2兩點(diǎn)距離之和等于2
2
,寫出橢圓C的方程;
(2)設(shè)過(1)中所得橢圓上的焦點(diǎn)F2且斜率為1的直線與其相交于A,B,求△ABF1的面積;
(3)設(shè)點(diǎn)P是橢圓C 上的任意一點(diǎn),過原點(diǎn)的直線l與橢圓相交于M,N兩點(diǎn),當(dāng)直線PM,PN的斜率都存在,并記為kPN,kPN試探究kPN•kPN的值是否與點(diǎn)P及直線l有關(guān),并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案