【題目】把2支相同的晨光簽字筆,3支相同英雄鋼筆全部分給4名優(yōu)秀學生,每名學生至少1支,則不同的分法有( )

A. 24種 B. 28種 C. 32種 D. 36種

【答案】B

【解析】第一類,有一個人分到一支鋼筆和一支簽字筆這中情況下的分法有先將一支鋼筆和一支簽字筆分到一個人手上,種分法將剩余的支鋼筆, 支簽字筆分給剩余個同學,種分法,那共有;
第二類,有一個人分到兩支簽字筆這種情況下的分法有先將兩支簽字筆分到一個人手上,種情況將剩余的支鋼筆分給剩余個人,只有1種分法那共有 ;
第三類有一個人分到兩支鋼筆這種情況的分法有先將兩支鋼筆分到一個人手上,種情況,再將剩余的兩支簽字筆和一支鋼筆分給剩余的個人,種分法,那共有
綜上所述總共有種分法.

故選B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,ABC內接于圓柱的底面圓O,AB是圓O的直徑AB2,BC1,DCEB是兩條母線,tanEAB.

(1)求三棱錐CABE的體積;

(2)證明:平面ACD⊥平面ADE;

(3)CD上是否存在一點M,使得MO∥平面ADE證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018屆江西省南昌市高三第一輪已知分別為三個內角的對邊,且

Ⅰ)求;

Ⅱ)若邊上的中線, , ,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若的極值點,試研究函數(shù)的單調性,并求的極值;

(2)若上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年5月14日,第一屆“一帶一路”國際高峰論壇在北京舉行,為了解不同年齡的人對“一帶一路”關注程度,某機構隨機抽取了年齡在歲之間的100人進行調查,并按年齡繪制成頻率分布直方圖,如圖所示,其分組區(qū)間為: , ,,,,.把年齡落在區(qū)間內的人分別稱為“青少年”和“中老年”.

(1)根據(jù)頻率分布直方圖求樣本的中位數(shù)(保留兩位小數(shù))和眾數(shù)

(2)根據(jù)已知條件完成下面的2×2列聯(lián)表,并判斷能否有99%的把握認為關注“帶一路”是否和年齡段有關?

關注

不關注

合計

青少年

15

中老年

合計

50

50

100

附:參考公式,其中

臨界值表:

/td>

0.05

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)若兩函數(shù)圖象有兩個不同的公共點,求實數(shù)的取值范圍;

(2)若, ,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中, , , 平面,在平行四邊形中, , ,

(1)求證: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的極坐標方程為,以極點為平面直角坐標系的原點,極軸為的正半軸,建立平面直角坐標系.

(1)若曲線為參數(shù))與曲線相交于兩點,求;

(2)若是曲線上的動點,且點的直角坐標為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程是為參數(shù)),以該直角坐標系的原點為極點, 軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)寫出曲線的普通方程和直線的直角坐標方程;

(2)設點,直線與曲線相交于兩點,且,求實數(shù)的值.

查看答案和解析>>

同步練習冊答案