【題目】為了解學(xué)生身高情況,某校以的比例對全校1000名學(xué)生按性別進(jìn)行分層抽樣調(diào)查,已知男女比例為,測得男生身高情況的頻率分布直方圖(如圖所示):
(1)計算所抽取的男生人數(shù),并估計男生身高的中位數(shù)(保留兩位小數(shù));
(2)從樣本中身高在之間的男生中任選2人,求至少有1人身高在之間的概率.
【答案】(1)174.64cm(2).
【解析】試題分析:
(1)由題意結(jié)合中位數(shù)的求法可得男生身高的中位數(shù)是174.64cm;
(2)列出所有可能的事件,結(jié)合古典概型公式可得至少有1人身高在之間的概率是.
試題解析:
(1)由題意得,所抽取的男生人數(shù)為:
1000×8%×=40人
依據(jù)樣本頻率分布直方圖:0.01×5+0.025×5+x=0.5 得x=0.325 ,而身高170~175之間的頻率為0.35,所以中位數(shù)為170+5×≈174.64cm
(2)樣本中身高在180~185 cm之間的男生有4人,設(shè)其編號為①,②,③,④,樣本中身高在185~190 cm之間的男生有2人,設(shè)其編號為⑤,⑥,從上述6人中任取2人的共有:
(①,②)(①,③)(①,④)(①,⑤)(①,⑥)
(②,③)(②,④)(②,⑤)(②,⑥)
(③,④)(③,⑤)(③,⑥)
(④,⑤)(④,⑥)
(⑤,⑥)
故從樣本中身高在180~190 cm之間的男生中任選2人的所有可能結(jié)果數(shù)為15,至少有1人身高在185~190 cm之間的可能結(jié)果數(shù)為9,因此,所求概率P2==.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), (為自然對數(shù)的底數(shù)).
(1)若函數(shù)的圖象在處的切線方程為,求, 的值;
(2)若時,函數(shù)在內(nèi)是增函數(shù),求的取值范圍;
(3)當(dāng)時,設(shè)函數(shù)的圖象與函數(shù)的圖象交于點、,過線段的中點作軸的垂線分別交、于點、,問是否存在點,使在處的切線與在處的切線平行?若存在,求出的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以該直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸的極坐標(biāo)系下,曲線的方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)曲線和曲線的交點為、,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求和函數(shù)的極值;
(2)若關(guān)于的方程有3個不同實根,求實數(shù)的取值范圍;
(3)直線為曲線的切線,且經(jīng)過原點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)是否存在極值,若存在,請求出極值;若不存在,請說明
理由;
(3)當(dāng)時.證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一個食品商店為了調(diào)查氣溫對熱飲銷售的影響,經(jīng)過調(diào)查得到關(guān)于賣出的熱飲杯數(shù)與當(dāng)天氣溫的數(shù)據(jù)如下表,繪出散點圖如下.通過計算,可以得到對應(yīng)的回歸方程=-2.352x+147.767,根據(jù)以上信息,判斷下列結(jié)論中正確的是( )
攝氏溫度 | -5 | 0 | 4 | 7 | 12 | 15 | 19 | 23 | 27 | 31 | 36 |
熱飲杯數(shù) | 156 | 150 | 132 | 128 | 130 | 116 | 104 | 89 | 93 | 76 | 54 |
A.氣溫與熱飲的銷售杯數(shù)之間成正相關(guān)
B.當(dāng)天氣溫為2℃時,這天大約可以賣出143杯熱飲
C.當(dāng)天氣溫為10℃時,這天恰賣出124杯熱飲
D.由于x=0時,的值與調(diào)查數(shù)據(jù)不符,故氣溫與賣出熱飲杯數(shù)不存在線性相關(guān)性
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠的甲、乙兩個車間的名工人進(jìn)行了勞動技能大比拼,規(guī)定:技能成績大于或等于分為優(yōu)秀, 分以下為非優(yōu)秀,統(tǒng)計成成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個車間工人中隨機抽取人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲車間 | |||
乙車間 | |||
合計 |
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按的可靠性要求,能否認(rèn)為“成績與車間有關(guān)系”?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=m-|x-1|-|x-2|,m∈R,且f(x+1)≥0的解集為[0,1].
(1)求m的值;
(2)若a,b,c,x,y,z∈R,且x2+y2+z2=a2+b2+c2=m,求證:ax+by+cz≤1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們知道:人們對聲音有不同的感覺,這與它的強度有關(guān)系.聲音的強度用瓦/米2 ()表示,但在實際測量時,常用聲音的強度水平表示,它們滿足以下公式: (單位為分貝, ,其中,這是人們平均能聽到的最小強度,是聽覺的開端).回答以下問題:
(1)樹葉沙沙聲的強度是,耳語的強度是,恬靜的無線電廣播的強度是,試分別求出它們的強度水平;
(2)某一新建的安靜小區(qū)規(guī)定:小區(qū)內(nèi)公共場所的聲音的強度水平必須保持在50分貝以下,試求聲音強度的范圍為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com