【題目】已知函數(shù), 為自然對數(shù)的底數(shù)).

(1)若函數(shù)的圖象在處的切線方程為,求 的值;

(2)若時,函數(shù)內是增函數(shù),求的取值范圍;

(3)當時,設函數(shù)的圖象與函數(shù)的圖象交于點、,過線段的中點軸的垂線分別交、于點、,問是否存在點,使處的切線與處的切線平行?若存在,求出的橫坐標;若不存在,請說明理由.

【答案】(1), ;(2);(3)不存在.

【解析】試題分析:

(1)利用導函數(shù)與切線的關系得到方程,解方程可得,

(2)函數(shù)為增函數(shù),則內恒成立,處理恒成立問題可得的取值范圍是;

(3) 假設在點處的切線與在點處的切線平行,則, ①,討論可得矛盾,假設不成立,

在點處的切線與在點處的切線不平行.

試題解析:(1)當時, ,導數(shù)

,

即函數(shù)的圖象在處的切線斜率為,切點為

函數(shù)的圖象在處的切線方程為,

,

, ;

(2)時,函數(shù)的解析式是,

導數(shù)

函數(shù)內是增函數(shù),

內恒成立,

時, .

,故的取值范圍是;

(3)假設在點處的切線與在點處的切線平行,

設點 ,

則由題意得點、的橫坐標與中點的橫坐標相等,且為

時, ,

在點處的切線斜率為,

由于兩切線平行,則

,則兩邊同乘以,得,

,

,

,則, ①,

,則

, , 上單調遞增,

, ,這與①矛盾,假設不成立,

在點處的切線與在點處的切線不平行.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2015年7月9日21時15分,臺風“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬人受災, 5.6萬人緊急轉移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災,直接經(jīng)濟損失12.99億元,距離陸豐市222千米的梅州也受到了臺風的影響,適逢暑假,小明調查了梅州某小區(qū)的50戶居民由于臺風造成的經(jīng)濟損失,將收集的數(shù)據(jù)分成, , , 五組,并作出如下頻率分布直方圖(圖1):

(1)試根據(jù)頻率分布直方圖估計小區(qū)平均每戶居民的平均損失;

(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(2)小明向班級同學發(fā)出倡議,為該小區(qū)居民捐款,現(xiàn)從損失超過6000元的居民中隨機

抽出2戶進行捐款援助,求抽出的2戶居民損失均超過8000元的概率;

(3)臺風后區(qū)委會號召該小區(qū)居民為臺風重災區(qū)捐款,小明調查的50戶居民捐款情況如下表,

在圖2表格空白外填寫正確數(shù)字,并說明是否有95%以上的把握認為捐款數(shù)額超過或

不超過500元和自身經(jīng)濟損失是否超過4000元有關?

經(jīng)濟損失不超過4000元

經(jīng)濟損失超過4000元

合計

捐款超過500元

30

捐款不超過500元

6

合計

附:臨界值參考公式: , .

0.15

0.10

0.05

/td>

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為,且成績分布在分數(shù)在以上(含的同學獲獎. 按文理科用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖(見下圖).

(1)填寫下面的列聯(lián)表,能否有超過的把握認為獲獎與學生的文理科有關?

(2)將上述調査所得的頻率視為概率,現(xiàn)從參賽學生中,任意抽取名學生,獲獎學生人數(shù)為,求的分布列及數(shù)學期望.

文科生

理科生

合計

獲獎

不獲獎

合計

附表及公式:

,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線,曲線為參數(shù)), 以坐標原點為極點,軸的正半軸為極軸建立極坐標系.

(1)求曲線的極坐標方程;

(2)若射線分別交兩點, 的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為、,離心率,點在橢圓上.

(1)求橢圓的方程;

(2)設過點且不與坐標軸垂直的直線交橢圓兩點,線段的垂直平分線與軸交于點,求點的橫坐標的取值范圍;

(3)在第(2)問的條件下,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個多面體的直觀圖及三視圖如圖所示,分別是的中點.

I)求證:平面;

II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)設,

①記的導函數(shù)為,求

②若方程有兩個不同實根,求實數(shù)的取值范圍;

(2)若在上存在一點使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1,a14=b4.

(1)求{an}的通項公式;

(2)設cn=an+bn,求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解學生身高情況,某校以的比例對全校1000名學生按性別進行分層抽樣調查,已知男女比例為,測得男生身高情況的頻率分布直方圖(如圖所示):

(1)計算所抽取的男生人數(shù),并估計男生身高的中位數(shù)(保留兩位小數(shù));

(2)從樣本中身高在之間的男生中任選2人,求至少有1人身高在之間的概率.

查看答案和解析>>

同步練習冊答案