【題目】已知橢圓的左、右焦點(diǎn)分別為、,離心率,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)過(guò)點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓于、兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),求點(diǎn)的橫坐標(biāo)的取值范圍;
(3)在第(2)問(wèn)的條件下,求面積的最大值.
【答案】(1);(2);(3).
【解析】試題分析:
(1)由題意求得,則橢圓方程為.
(2)將直線方程與橢圓方程聯(lián)立,整理可得 ,則的取值范圍為.
(3)面積公式: ,求導(dǎo)討論可得面積的最大值為.
試題解析:(1)點(diǎn)在且橢圓上, ,
, ,
, , 橢圓的方程為.
(2)設(shè)直線的方程為,
代入,整理得.
直線過(guò)橢圓的右焦點(diǎn), 方程有兩個(gè)不等實(shí)根.
記, 中點(diǎn),
則, , ,
垂直平分線的方程為.
令,得 .
, . 的取值范圍為.
(3),
而,
由,可得.
所以.
又,所以.
所以的面積為.
設(shè),則.
可知在區(qū)間單調(diào)遞增,在區(qū)間單調(diào)遞減.
所以,當(dāng)時(shí), 有最大值.
所以,當(dāng)時(shí), 的面積有最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的直三棱柱中,,分別是,的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)若,,,求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的參數(shù)方程為(為參數(shù),),直線的參數(shù)方程為(為參數(shù)).
(1)點(diǎn)在曲線上,且曲線在點(diǎn)處的切線與直線垂直,求點(diǎn)的極坐標(biāo);
(2)設(shè)直線與曲線有兩個(gè)不同的交點(diǎn),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái)我國(guó)電子商務(wù)行業(yè)迎來(lái)蓬勃發(fā)展的新機(jī)遇,2016年雙11期間,某平臺(tái)的銷(xiāo)售業(yè)績(jī)高達(dá)918億人民幣,與此同時(shí),相關(guān)管理部門(mén)也推出了針對(duì)電商的商品和服務(wù)評(píng)價(jià)體系,現(xiàn)從評(píng)價(jià)系統(tǒng)中隨機(jī)選出200次成功的交易,并對(duì)其評(píng)價(jià)結(jié)果進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為,對(duì)服務(wù)的好評(píng)率為,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.
在犯錯(cuò)誤概率不超過(guò)( )的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān).
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), (為自然對(duì)數(shù)的底數(shù)).
(1)若函數(shù)的圖象在處的切線方程為,求, 的值;
(2)若時(shí),函數(shù)在內(nèi)是增函數(shù),求的取值范圍;
(3)當(dāng)時(shí),設(shè)函數(shù)的圖象與函數(shù)的圖象交于點(diǎn)、,過(guò)線段的中點(diǎn)作軸的垂線分別交、于點(diǎn)、,問(wèn)是否存在點(diǎn),使在處的切線與在處的切線平行?若存在,求出的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類(lèi)的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“是或作品獲得一等獎(jiǎng)”;
乙說(shuō):“作品獲得一等獎(jiǎng)”;
丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且2S△ABC=·.
(1)求角B的大;
(2)若b=2,求a+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)是否存在極值,若存在,請(qǐng)求出極值;若不存在,請(qǐng)說(shuō)明
理由;
(3)當(dāng)時(shí).證明: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com