Processing math: 68%
17.(1)證明柯西不等式:若a,b,c,d都是實數(shù),則(a2+b2)(c2+d2)≥(ac+bd)2,并指出此不等式里等號成立的條件:
(2)用柯西不等式求函數(shù)y=2x3+45x的最大值.

分析 (1)利用作差法,即可證明不等式;
(2)利用柯西不等式,可得y=2×x3+4×5x22+42[x32+5x2],即可得出結(jié)論.

解答 (1)證明:(a2+b2)(c2+d2)-(ac+bd)2=a2d2+b2c2-2adbc…(2分)
=(ad-bc)2≥0,…(4分)
當且僅當ad-bc=0時,等號成立.…(5分)
(2)解:函數(shù)的定義域為[3,5],且y>0,…(6分)
y=2×x3+4×5x22+42[x32+5x2]…(8分)
=20×2=210,…(9分)
當且僅當25x=4x3時,等號成立,
x=175時函數(shù)取最大值210.…(10分)

點評 本題考查不等式的證明,考查柯西不等式的運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,A=78°,a=52,b=7,則此三角形(  )
A.有一個解B.有兩個解C.無解D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=x2e-x,當曲線y=f(x)的切線斜率為負數(shù)時,求切線在x軸上截距的取值范圍(-∞,0)∪[22+3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知不等式|x-2|>1的解集與關(guān)于x的不等式x2-ax+b>0的解集相等.
(1)求實數(shù)a,b的值;
(2)求函數(shù)f(x)=xb+ax的最大值,以及取得最大值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知P={y|y=cosθ,θ∈R},Q={x|x2+(1-2)x-2=0},則P∩Q=(  )
A.B.{0}C.{-1}D.{12}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(-3,0),對稱軸為x=-1.給出下面四個結(jié)論:
①b2>4ac; 
②2a-b=1; 
③a-b+c=0; 
④5a<b.
其中正確的是( �。�
A.②④B.①④C.②③D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知f(x)是定義在R上的偶函數(shù),且當x≥0時,f(x+2)=f(x),若f(x)滿足:
①x∈[0,2)時,f(x)=a-|x-b|,
②f(x)是定義在R上的周期函數(shù),
③存在m使得f(x+m)=-f(m-x)
則a+b的值為32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a=(cos32x,-sin32x),b=(cosx2,sinx2),x∈[0,\frac{π}{2}].若函數(shù)f(x)=\overrightarrow a\overrightarrow b-\frac{1}{2}λ|{\overrightarrow a$+$\overrightarrow b}|的最小值為-\frac{3}{2},求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)求值:(6.25){\;}^{\frac{1}{2}}-(-π)0-(-\frac{8}{27}{\;}^{\frac{2}{3}}+(1.5)-2
(2)解不等式:73x<(\frac{1}{7}12-6x

查看答案和解析>>

同步練習(xí)冊答案