【題目】設函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導函數(shù),f(﹣1)=0,當x>0時,xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是

【答案】(﹣∞,﹣1)∪(0,1)
【解析】解:設g(x)= ,則g(x)的導數(shù)為:g′(x)= ,
∵當x>0時總有xf′(x)<f(x)成立,
即當x>0時,g′(x)恒小于0,
∴當x>0時,函數(shù)g(x)= 為減函數(shù),
又∵g(﹣x)= = = =g(x),
∴函數(shù)g(x)為定義域上的偶函數(shù)
又∵g(﹣1)= =0,
∴函數(shù)g(x)的大致圖象如圖所示:
數(shù)形結(jié)合可得,不等式f(x)>0xg(x)>0

0<x<1或x<﹣1.
∴f(x)>0成立的x的取值范圍是(﹣∞,﹣1)∪(0,1).
所以答案是:(﹣∞,﹣1)∪(0,1).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了探究車流量與的濃度是否相關,現(xiàn)采集到華中某城市2015年12月份某星期星期一到星期日某一時間段車流量與的數(shù)據(jù)如表:

時間

星期一

星期二

星期三

星期四

星期五

星期六

星期日

車流量(萬輛)

1

2

3

4

5

6

7

的濃度(微克/立方米)

28

30

35

41

49

56

62

(1)求關于的線性回歸方程;(提示數(shù)據(jù):

(2)(I)利用(1)所求的回歸方程,預測該市車流量為12萬輛時的濃度;(II)規(guī)定:當一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為優(yōu);當一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為良,為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應控制當天車流量不超過多少萬輛?(結(jié)果以萬輛為單位,保留整數(shù))參考公式:回歸直線的方程是,其中, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,sin2A+sin2B+sin2C=2 sinAsinBsinC,且a=2,則△ABC的外接圓半徑R=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P(2,2),圓Cx2y2-8y=0,過點P的動直線l與圓C交于A,B兩點,線段AB的中點為M,O為坐標原點.

(1)M的軌跡方程;

(2)|OP|=|OM|時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+x2+bx+1在點(1,f(1))處的切線方程為4x﹣y﹣12=0.
(1)求函數(shù)f(x)的解析式;
(2)求f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把函數(shù)y=cos(2x+φ)(|φ|< )的圖象向左平移 個單位,得到函數(shù)y=f(x)的圖象關于直線x= 對稱,則φ的值為(
A.﹣
B.﹣
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,以原點為極點, 軸正半軸為極軸建立極坐標系.若曲線的極坐標方程為, 點的極坐標為,在平面直角坐標系中,直線經(jīng)過點,斜率為.

(1)寫出曲線的直角坐標方程和直線的參數(shù)方程;

(2)設直線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某程序框圖如圖所示,現(xiàn)輸入如下四個函數(shù),則可以輸出的函數(shù)是(

A.f(x)=x2
B.f(x)=
C.f(x)=ex
D.f(x)=sinx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將7名應屆師范大學畢業(yè)生分配到3所中學任教.

(1)4個人分到甲學校,2個人分到乙學校,1個人分到丙學校,有多少種不同的分配方案?

(2)一所學校去4個人,另一所學校去2個人,剩下的一個學校去1個人,有多少種不同的分配方案?

查看答案和解析>>

同步練習冊答案